Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New nanostructured thin film shows promise for efficient solar energy conversion

 Jin Zhang is working to develop better materials for solar cells. Photo by T. Stephens.
Jin Zhang is working to develop better materials for solar cells. Photo by T. Stephens.

Abstract:
In the race to make solar cells cheaper and more efficient, many researchers and start-up companies are betting on new designs that exploit nanostructures--materials engineered on the scale of a billionth of a meter. Using nanotechnology, researchers can experiment with and control how a material generates, captures, transports, and stores free electrons--properties that are important for the conversion of sunlight into electricity.

New nanostructured thin film shows promise for efficient solar energy conversion

SANTA CRUZ, CA | Posted on January 8th, 2008

Two nanotech methods for engineering solar cell materials have shown particular promise. One uses thin films of metal oxide nanoparticles, such as titanium dioxide, doped with other elements, such as nitrogen. Another strategy employs quantum dots--nanosize crystals--that strongly absorb visible light. These tiny semiconductors inject electrons into a metal oxide film, or "sensitize" it, to increase solar energy conversion. Both doping and quantum dot sensitization extend the visible light absorption of the metal oxide materials.

Combining these two approaches appears to yield better solar cell materials than either one alone does, according to Jin Zhang, professor of chemistry at the University of California, Santa Cruz. Zhang led a team of researchers from California, Mexico, and China that created a thin film doped with nitrogen and sensitized with quantum dots. When tested, the new nanocomposite material performed better than predicted--as if the functioning of the whole material was greater than the sum of its two individual components.

"We have discovered a new strategy that could be very useful for enhancing the photo response and conversion efficiency of solar cells based on nanomaterials," said Zhang. "We initially thought that the best we might do is get results as good as the sum of the two, and maybe if we didn't make this right, we'd get something worse. But surprisingly, these materials were much better."

The group's findings were reported in the Journal of Physical Chemistry in a paper posted online on January 4. Lead author of the paper was Tzarara Lopez-Luke, a graduate student visiting in Zheng's lab who is now at the Instituto de Investigaciones Metalurgicas, UMSNH, Morelia, Mexico.

Zhang's team characterized the new nanocomposite material using a broad range of tools, including atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, and photoelectrochemistry techniques. They prepared films with thicknesses between 150 and 1100 nanometers, with titanium dioxide particles that had an average size of 100 nanometers. They doped the titanium dioxide lattice with nitrogen atoms. To this thin film, they chemically linked quantum dots made of cadmium selenide for sensitization.

The resulting hybrid material offered a combination of advantages. Nitrogen doping allowed the material to absorb a broad range of light energy, including energy from the visible region of the electromagnetic spectrum. The quantum dots also enhanced visible light absorption and boosted the photocurrent and power conversion of the material.

When compared with materials that were just doped with nitrogen or just embedded with cadmium selenide quantum dots, the nanocomposite showed higher performance, as measured by the "incident photon to current conversion efficiency" (IPCE), the team reported. The nanocomposite's IPCE was as much as three times greater than the sum of the IPCEs for the two other materials, Zhang said.

"We think what's happening is that it's easier for the charge to hop around in the material," he explained. "That can only happen if you have both the quantum dot sensitizing and the nitrogen doping at the same time."

The nanocomposite material could be used not only to enhance solar cells, but also to serve as part of other energy technologies. One of Zhang's long-term goals is to marry a highly efficient solar cell with a state-of-the-art photoelectrochemical cell. Such a device could, in theory, use energy generated from sunlight to split water and produce hydrogen fuel (see earlier press release at
http://press.ucsc.edu/text.asp?pid=712 ). The nanocomposite material could also potentially be useful in devices for converting carbon dioxide into hydrocarbon fuels, such as methane.

The new strategy for engineering solar cell materials offers a promising path for Zhang's lab to explore for years to come.

"I'm very excited because this work is preliminary and there's a lot of optimizing we can do now," Zhang noted. "We have three materials--or three parameters--that we can play with to make the energy levels just right."

In essence, the team has been trying to manipulate materials so that when sunlight strikes them, the free electrons generated can easily move from one energy level to another--or jump across the different materials--and be efficiently converted to electricity.

"What we're doing is essentially 'band-gap engineering.' We're manipulating the energy levels of the nanocomposite material so the electrons can work more efficiently for electricity generation," Zhang said. "If our model is correct, we're making a good case for this kind of strategy."

Sources of funding for this research included the U.S. Department of Energy, the National Science Foundation of China, and the University of California Institute for Mexico and the United States (UC-MEXUS).

Research collaborators included Abraham Wolcott, Li-ping Xu and Shaowei Chen at UCSC; Zhenhai Wen and Jinghong Li at Tsinghua University in Beijing, China; and Elder De La Rosa of the Centro de Investigaciones en Optica, A.C., in Leon, Guanajuato, Mexico.

####

About UC Santa Cruz
UC Santa Cruz has a current enrollment of about 15,000 students. Undergraduates pursue course work in 62 majors, and graduate students work toward master's degrees, doctoral degrees, and graduate certificates in 33 academic fields. Above: Students pass through the Science Hill area of the campus, a picturesque cluster of science buildings, including the award-winning Science & Engineering Library.

For more information, please click here

Contacts:
Jin Zhang
(831) 459-3776


Karen Schmidt
or Tim Stephens
(831) 459-2495

Copyright © UC Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project