Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Integrated gene delivery vectors—Evolution and prospects

January 7th, 2008

Integrated gene delivery vectors—Evolution and prospects

Abstract:
Such safety issues combined with the lack of scalability of viral vectors as vehicles for gene delivery prompted the development of non-viral vectors as gene delivery vehicles. The simplest non-vectors include cationic-polymer-DNA complexes, also known as polyplexes; can be used to deliver DNA into cells. Polyplexes are positively charged complexes of cationic polymers with anionic DNA. Use of cationic materials help condense the negatively charged DNA and reduce its susceptibility to nucleases. In addition, positive charges aid to bind the complex to the negatively charged cell surface and improve the chances of internalisation. Similarly, cationic lipids may be used and the complexes so formed are called lipoplexes. With the advent of nanoscience, the DNA may be complexed with nanoparticles made up of cationic polymers like chitosan or polyethylene imine or cationic lipids like lipofectin. Due to their small size, nanoparticles are deemed to be more efficacious than the simple complexes. Cationic liposomes, owing to their typical bi-layer structure, have also improved the gene delivery efficacy. Liposomes remain one of the most worked upon vehicles from DNA delivery. Many cationic materials are known to cause inflammatory responses and efficacy remains moderate. In spite of these drawbacks, the major achievement of this generation of gene delivery vehicles was of increasing the possible size of the gene they could transfer. While, the highest possible gene size that can be delivered by a virus is eight kda, that with a non-viral vector is at least 50 kda.

Source:
expresspharmaonline.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Nanomedicine

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project