Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Integrated gene delivery vectors—Evolution and prospects

January 7th, 2008

Integrated gene delivery vectors—Evolution and prospects

Abstract:
Such safety issues combined with the lack of scalability of viral vectors as vehicles for gene delivery prompted the development of non-viral vectors as gene delivery vehicles. The simplest non-vectors include cationic-polymer-DNA complexes, also known as polyplexes; can be used to deliver DNA into cells. Polyplexes are positively charged complexes of cationic polymers with anionic DNA. Use of cationic materials help condense the negatively charged DNA and reduce its susceptibility to nucleases. In addition, positive charges aid to bind the complex to the negatively charged cell surface and improve the chances of internalisation. Similarly, cationic lipids may be used and the complexes so formed are called lipoplexes. With the advent of nanoscience, the DNA may be complexed with nanoparticles made up of cationic polymers like chitosan or polyethylene imine or cationic lipids like lipofectin. Due to their small size, nanoparticles are deemed to be more efficacious than the simple complexes. Cationic liposomes, owing to their typical bi-layer structure, have also improved the gene delivery efficacy. Liposomes remain one of the most worked upon vehicles from DNA delivery. Many cationic materials are known to cause inflammatory responses and efficacy remains moderate. In spite of these drawbacks, the major achievement of this generation of gene delivery vehicles was of increasing the possible size of the gene they could transfer. While, the highest possible gene size that can be delivered by a virus is eight kda, that with a non-viral vector is at least 50 kda.

Source:
expresspharmaonline.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project