Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Integrated gene delivery vectors—Evolution and prospects

January 7th, 2008

Integrated gene delivery vectors—Evolution and prospects

Abstract:
Such safety issues combined with the lack of scalability of viral vectors as vehicles for gene delivery prompted the development of non-viral vectors as gene delivery vehicles. The simplest non-vectors include cationic-polymer-DNA complexes, also known as polyplexes; can be used to deliver DNA into cells. Polyplexes are positively charged complexes of cationic polymers with anionic DNA. Use of cationic materials help condense the negatively charged DNA and reduce its susceptibility to nucleases. In addition, positive charges aid to bind the complex to the negatively charged cell surface and improve the chances of internalisation. Similarly, cationic lipids may be used and the complexes so formed are called lipoplexes. With the advent of nanoscience, the DNA may be complexed with nanoparticles made up of cationic polymers like chitosan or polyethylene imine or cationic lipids like lipofectin. Due to their small size, nanoparticles are deemed to be more efficacious than the simple complexes. Cationic liposomes, owing to their typical bi-layer structure, have also improved the gene delivery efficacy. Liposomes remain one of the most worked upon vehicles from DNA delivery. Many cationic materials are known to cause inflammatory responses and efficacy remains moderate. In spite of these drawbacks, the major achievement of this generation of gene delivery vehicles was of increasing the possible size of the gene they could transfer. While, the highest possible gene size that can be delivered by a virus is eight kda, that with a non-viral vector is at least 50 kda.

Source:
expresspharmaonline.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nanomedicine

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE