Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Nanotechnology aids large-area solar cell

December 31st, 2007

Nanotechnology aids large-area solar cell

Abstract:
A scientist at Israel's Bar-Ilan University claims that he has managed to create a solar cell 100 times bigger than a typical solar cell, using nanotechnology methods. Professor Arie Zaban, head of Bar-Ilan University's Nanotechnology Institute, is an expert in photovoltaics. In a recently patented technique, Professor Zaban demonstrated how metallic wires mounted on conductive glass can form the basis of solar cells with efficiency similar to that of conventional, silicon-based cells, but that are much cheaper to produce.

While Professor Zaban's earlier efforts produced photovoltaic cells one square centimeter in size, he has now achieved a cell measuring 10 centimeters by 10 centimeters, which he claimed would boost the technique's usefulness in producing commercial amounts of solar power. "Initially, we created linked arrays of very small cells, which led to a loss of efficiency because the sunlight hitting the space between the cells was not converted to electricity," Professor Zaban said. Professor Zaban said the cell is now a practical choice for solar energy production. "We've found a way to produce platinum nanodots  tiny crystals measuring only a few nanometers in diameter," Professor Zaban said, adding that this highly reactive metal is an important part of his solar cell's operation. "Thanks to this technique  now under consideration for a patent  we reduce the amount of platinum needed by a factor of 40." In previous research, Professor Zaban developed a low-cost method of depositing semiconductor material in a sponge-like array on top of flexible plastic sheets. Key to his system is the use of an organic dye that allows the semiconductor, transparent in its natural form, to absorb light.

Source:
eetimes.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Discoveries

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Announcements

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Energy

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project