Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Titania photovoltaic cell performance

December 20th, 2007

Titania photovoltaic cell performance

Abstract:
The high demand for efficient and inexpensive renewable energy sources is leading to increased research in organic photovoltaics. Among the different types of devices, dye-sensitized solar cells (DSSCs) based on porous titanium dioxide (TiO2) nanoparticle layers1 can achieve the highest efficiency, exceeding 10%. However, electron transport through a random TiO2 network is typically very slow.2 Improving its performance means developing novel organic dyes. Alternatively, replacing the TiO2 layer with one having a different nanostructure could also potentially achieve both improved charge transport and collection.

To this end, one could employ 1D nanostructures such as nanowires or nanotubes. Yet though 1D arrays enable simple pathways for electrons to reach electrodes, they also have smaller surface areas compared to random nanoparticle networks, thus leading to reduced performance. For example, the efficiency3 of 6.89% for an ∼20μm-long DSSC made of TiO2 nanotube arrays is still lower than that routinely achieved using a porous layer. Because increased surface areas can be obtained using longer nanotubes of smaller diameter, much effort has been invested in developing novel anodization procedures aimed at improving nanotube form and structure.3-6 Anodization conditions such as those determined by the type of electrolyte or the voltage applied, among others, measurably affect the morphology of the nanotubes (see Figure 1). However, the specific fabrication procedure employed also determines the crystal quality, as well as the defect types and densities, which in turn regulate charge transport.

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Discoveries

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Announcements

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Energy

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Solar/Photovoltaic

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project