Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hybrid semiconductors show zero thermal expansion; could lead to hardier electronics and optoelectronics

The crystal structure of -ZnTe(en)0:5, determined by single-crystal X-ray diffraction. Two-monolayerthick ZnTe slabs are interconnected by ethylenediamine (C2N2H8) molecules bonded to zinc atoms. Zn-Green, Te-Red, N-Blue,and C-Gray. Hydrogen atoms are omitted for clarity.
The crystal structure of -ZnTe(en)0:5, determined by single-crystal X-ray diffraction. Two-monolayerthick ZnTe slabs are interconnected by ethylenediamine (C2N2H8) molecules bonded to zinc atoms. Zn-Green, Te-Red, N-Blue,and C-Gray. Hydrogen atoms are omitted for clarity.

Abstract:
The fan in your computer is there to keep the microprocessor chip from heating to the point where its component materials start to expand, inducing cracks that interrupt the flow of electricity — and not incidentally, ruin the chip. Thermal expansion can also separate semiconducting materials from the substrate, reduce performance through changes in the electronic structure of the material or warp the delicate structures that emit laser light.

Hybrid semiconductors show zero thermal expansion; could lead to hardier electronics and optoelectronics

ARGONNE, IL | Posted on December 19th, 2007

Recently published research by scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Argonne National Laboratory, and academic institutions has shed light on a semiconducting material with zero thermal expansion (ZTE). The research may play a role in the design of future generations of electronics and optoelectronics that can withstand a wide range of temperatures.

Traditional interests in ZTE materials have largely been in areas such as optics, heat-engine components and kitchenware. ZTE materials with applications in non-conventional areas such as electronics and optoelectronics are rare; most are glasses, which do not work well in electronics applications. The hybrid inorganic-organic semiconductor investigated in this work is a multifunctional semiconductor that has previously been shown to possess superior electronic and optical properties. The work also suggests an alternative route to designing materials with any desired positive or negative thermal expansion.

"It's a merger of inorganic and organic materials," said Zahirul Islam, a physicist in Argonne's X-Ray Science Division, "which form a fully coherent, three-dimensionally ordered crystal. Normally inorganic and organic materials don't work very well together, but here they are working together to display these remarkable properties."

The materials under study form alternating organic and inorganic layers that work together to produce these effects. One contracts while the other expands, and the net effect is zero.

"This work suggests a novel approach to design the thermal expansion — from positive to negative, including zero — in a nanoscopic scale by assembling nano-scale units in an ordered manner," said principal investigator Yong Zhang of NREL. "The idea has only been demonstrated for tuning thermal expansion in one dimension and study was limited to one or two materials. Next, we would like to extend the idea to higher dimensions (i.e., ZTE in more than one dimension), and explore more inorganic-organic combinations."

These hybrid materials hold promise for high-efficiency semiconductor lasers, ultrathin and flexible solar cells and light-emitting and detecting devices. It is possible to "dope" the materials (adding small amounts of other compounds) to form transparent conducting materials, Zhang said.

While chemical and thermal stability are two major problems for most hybrids, the hybrid nanostructures investigated in this work are found to be exceptionally stable in the air, even under the illumination of an ultraviolet laser.

"Not only do the crystal structures remain unchanged," Zhang said, "but their electronic and optical properties remain after a few years of air exposure or upon heating to more than 200 degrees C, a feature attributed to the strong covalent bonding throughout the structure."

This work involved multiple institutes with complementary strengths and capabilities. Scientists at NREL initiated and organized the project. The materials were synthesized by Jing Li's group at Rutgers University. Critical X-ray diffraction measurements to determine the ZTE effects were carried out at Argonne's Advanced Photon Source. Other key Argonne researchers are Yang Ren and Peter L. Lee. Theoretical modeling on the phonon (vibrational) spectrum, crucial to the understanding of the experimental findings, was performed by scientists at the University of Arkansas. Collaborators at the University of Colorado at Boulder also made important contributions to the work.

####

About Argonne National Laboratory
Argonne National Laboratory, a renowned R&D center, brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

By Dave Jacqué.

For more information, please click here

Contacts:
Steve McGregor
630/252-5580

at Argonne

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Laboratories

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project