Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA engineering researchers capture optical 'rogue waves'

Abstract:
Maritime folklore tells tales of giant "rogue waves" that can appear and disappear without warning in the open ocean. Also known as "freak waves," these ominous monsters have been described by mariners for ages and have even appeared prominently in many legendary literary works, from Homer's "Odyssey" to "Robinson Crusoe."

UCLA engineering researchers capture optical 'rogue waves'

Los Angeles, CA | Posted on December 12th, 2007

Once dismissed by scientists as fanciful sailors' stories akin to sea monsters and uncharted inlands, recent observations have shown that they are a real phenomenon, capable of destroying even large modern ships. However, this mysterious phenomenon has continued to elude researchers, as man-made rouge waves have not been reported in scientific literature — in water or in any other medium.

Now, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have succeeded in creating and capturing rogue waves. In their experiments, they have discovered optical rogue waves — freak, brief pulses of intense light analogous to the infamous oceanic monsters — propagating through optical fiber. Their findings appear in the Dec. 13 issue of the journal Nature.

"Optical rogue waves bear a close connection to their oceanic cousins," said lead investigator Daniel Solli, a UCLA Engineering researcher. "Optical experiments may help to resolve the mystery of oceanic rogue waves, which are very difficult to study directly."

It is thought that rogue waves are a nonlinear, perhaps chaotic, phenomenon, able to develop suddenly from seemingly innocuous normal waves. While the study of rogue waves has focused on oceanic systems and water-based models, light waves traveling in optical fibers obey very similar mathematics to water waves traveling in the open ocean, making it easier to study them in a laboratory environment.

Still, detecting a rogue wave is like finding a needle in a haystack. The wave is a solitary event that occurs rarely, and, to make matters worse, the timing of its occurrence is entirely random. But using a novel detection method they developed, the UCLA research group was able to not only capture optical rogue waves but to measure their statistical properties as well.

They found that, similar to freak waves in the ocean, optical rogue waves obey "L-shaped" statistics - a type of distribution in which the heights of most waves are tightly clustered around a small value but where large outliers also occur. While these occurrences are rare, their probability is much larger than predicted by conventional (so-called normal or Gaussian) statistics.

"This discovery is the first observation of man-made rogue waves reported in scientific literature, but its implications go beyond just physics," said Bahram Jalali, UCLA professor of electrical engineering and the researcher group leader. "For example, rare but extreme events, popularly known as "black swans," also occur in financial markets with spectacular consequences. Our observations may help develop mathematical models that can identify the conditions that lead to such events."

Co-authors on the Nature paper include UCLA Engineering researchers Claus Ropers and Prakash Koonath.

The research was funded by the Defense Advanced Research Projects Agency (DARPA), the central research and development organization for the U.S. Department of Defense.

####

About University of California - Los Angeles
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in space exploration, wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies. For more information, visit www.engineer.ucla.edu.

For more information, please click here

Contacts:
Bahram Jalali

310-780-8943

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project