Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > UQ scientists make a quantum leap in research

December 11th, 2007

UQ scientists make a quantum leap in research

Abstract:
University of Queensland researchers are among an international team to have made the first ever execution of a quantum calculation, a major step towards building the first quantum computers.

Story:
Professor Andrew White, from UQ's Centre for Quantum Computer Technology together with colleagues from the University of Toronto in Canada, said by manipulating quantum mechanically entangled photons - the fundamental particles of light - the prime factors of the number 15 were calculated.

"Prime numbers are divisible only by themselves and one, so the prime factors of 15 are three and five," Professor White said.

"Although the answer to this problem could have been obtained much more quickly by querying a bright eight-year-old, as the number becomes bigger and bigger the problem becomes more and more difficult.

"What is difficult for your brain is also difficult for conventional computers. This is not just a problem of interest to pure mathematicians: the computational difficulty of factoring very large numbers forms the basis of widely used internet encryption systems."

Ben Lanyon, UQ doctoral student and the research paper's first author, said calculating the prime factors of 15 was a crucial step towards calculating much larger numbers, which could be used to crack cryptographic codes that are unbreakable using conventional computers.

"Our goal is not to break these codes in practice, but to show that they can be broken, and motivate a move to a more secure system," Mr Lanyon said.

"These codes form the basis of most banking and computer security and has implications of how we keep all data secure in the future."

Professor White said in any computer a problem must be broken down into manageable chunks.

"Classical computers use two-level systems called bits (binary digits) while quantum computers use two-level 'quantum-mechanical' systems called qubits (quantum bits)," he said.

"A qubit is like a coin that can be heads (on), tails (off) or simultaneously heads AND tails (on and off) or any possible combination in-between.

"This is impossible with normal bits but one qubit can be in two possible states, two qubits can be in four, three qubits in eight, and so on. Quantum memory sizes grow exponentially with the number of qubits.

"Functional large-scale quantum computers may be as many years away, and it is hard to know how they will change the world, but change our world they will."

The research will be published in the prestigious Physical Review Letters later this month.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Discoveries

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE