Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > News > UQ scientists make a quantum leap in research

December 11th, 2007

UQ scientists make a quantum leap in research

University of Queensland researchers are among an international team to have made the first ever execution of a quantum calculation, a major step towards building the first quantum computers.

Professor Andrew White, from UQ's Centre for Quantum Computer Technology together with colleagues from the University of Toronto in Canada, said by manipulating quantum mechanically entangled photons - the fundamental particles of light - the prime factors of the number 15 were calculated.

"Prime numbers are divisible only by themselves and one, so the prime factors of 15 are three and five," Professor White said.

"Although the answer to this problem could have been obtained much more quickly by querying a bright eight-year-old, as the number becomes bigger and bigger the problem becomes more and more difficult.

"What is difficult for your brain is also difficult for conventional computers. This is not just a problem of interest to pure mathematicians: the computational difficulty of factoring very large numbers forms the basis of widely used internet encryption systems."

Ben Lanyon, UQ doctoral student and the research paper's first author, said calculating the prime factors of 15 was a crucial step towards calculating much larger numbers, which could be used to crack cryptographic codes that are unbreakable using conventional computers.

"Our goal is not to break these codes in practice, but to show that they can be broken, and motivate a move to a more secure system," Mr Lanyon said.

"These codes form the basis of most banking and computer security and has implications of how we keep all data secure in the future."

Professor White said in any computer a problem must be broken down into manageable chunks.

"Classical computers use two-level systems called bits (binary digits) while quantum computers use two-level 'quantum-mechanical' systems called qubits (quantum bits)," he said.

"A qubit is like a coin that can be heads (on), tails (off) or simultaneously heads AND tails (on and off) or any possible combination in-between.

"This is impossible with normal bits but one qubit can be in two possible states, two qubits can be in four, three qubits in eight, and so on. Quantum memory sizes grow exponentially with the number of qubits.

"Functional large-scale quantum computers may be as many years away, and it is hard to know how they will change the world, but change our world they will."

The research will be published in the prestigious Physical Review Letters later this month.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Purdue launching new quantum center during workshop October 8th, 2015

Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons October 7th, 2015

Harris & Harris Group Portfolio Company, D-Wave Systems, Announces Multi-Year Agreement to Provide Its Technology to Google, NASA and USRA's Quantum Artificial Intelligence Lab October 6th, 2015

Laser-wielding physicists seize control of atoms' behavior October 5th, 2015


Controllable protein gates deliver on-demand permeability in artificial nanovesicles October 9th, 2015

Performance of Polymeric Nanoparticles as Gene Carriers Studied by Iranian, Dutch Scientists October 9th, 2015

Room temperature magnetic skyrmions, a new type of digital memory? October 8th, 2015

A quantum simulator of impossible physics: In the experiment, developed by the UPV/EHU-University of the Basque Country in conjunction with the University of Tsinghua (China), the atoms simulate absurd actions "as if they were actors in a quantum theatre" October 8th, 2015


Controllable protein gates deliver on-demand permeability in artificial nanovesicles October 9th, 2015

Faster design -- better catalysts: New method facilitates research on fuel cell catalysts October 9th, 2015

Performance of Polymeric Nanoparticles as Gene Carriers Studied by Iranian, Dutch Scientists October 9th, 2015

Newly discovered 'design rule' brings nature-inspired nanostructures one step closer: Computer sims and microscopy research at Berkeley Lab yield first atomic-resolution structure of a peptoid nanosheet October 8th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic