Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Building Tumor Balls for Better Drug Discovery

Abstract:
Over the past few years, researchers have found that small, spherical conglomerations of tumor cells are superior to individual cells for predicting the response of malignant cells to a variety of anticancer treatments. Now, researchers at the University of California, Berkeley, have developed a microfluidics device that can form tumor spheroids in a large-scale, reproducible manner amenable to high-throughput drug screening protocols. This work is reported in the journal Biomedical Microdevices.

Building Tumor Balls for Better Drug Discovery

Bethesda , MD | Posted on December 5th, 2007

To trap a reproducible number of cells in an environment that causes the cells to adhere to one another in discrete structures (the tumor spheroid), Luke Lee, Ph.D., and colleagues designed a microfluidics device that uses the properties of fluid flow at the nanoscale to capture cells within a U-shaped structure. Once trapped, the cells continue receiving nutrients and oxygen—or added drug molecules—as the fluid passes through a tiny perfusion channel sounding the larger U-shaped structure, in much the same way that small tumors receive nutrients as they leak from surrounding blood vessels.

The researchers are able to create as many as 7,500 traps per square centimeter, each of which can hold between 9 and 11 cells. Research by other investigators has shown that tumor spheroids of this size, though difficult to make, have higher resistance to drug than do monolayers of cells. Once trapped, the cells begin to adhere to one another, forming what resembles a small mass of cells, rather than a collection of discrete cells. These small masses may accurately represent tumors early in their development. The researchers note that they can alter the size of the U-shaped traps to produce larger spheroids.

This work is detailed in the paper "Microfluidic self-assembly of tumor spheroids for anticancer drug discovery." An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project