Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > UIC chemists characterize Alzheimer's neurotoxin structure

Abstract:
Amyloid plaques, the hallmark of Alzheimer's disease, are clumps of fiber-like misfolded proteins which many experts think cause this devastating neurodegenerative disease.

UIC chemists characterize Alzheimer's neurotoxin structure

Chicago | Posted on December 3rd, 2007

While effective treatment remains an elusive goal, new research by University of Illinois at Chicago chemists suggests a possible new approach.

Yoshitaka Ishii, associate professor of chemistry, and his students managed to capture and characterize a crucial intermediate step in the formation of amyloid plaque fibers, or fibrils, showing tiny spheres averaging 20 nanometers in diameter assembling into sheet-like structures comparable to that seen in formation of fibrils.

Fibrils made of small proteins called amyloid-beta are toxic to nerve cells, but intermediate spheres, including those identified by Ishii's group, are more than 10 times as poisonous. That has made the spherical intermediates a new suspect for causing Alzheimer's disease.

"The problem with studying the structure of this intermediate form is that it's so unstable," said Ishii. His team's approach, he said, was to 'freeze-trap' the fleeting intermediate form, then use solid-state nuclear magnetic resonance to determine its structure and electron microscopes to study its morphology, or shape.

Ishii and his coworkers confirmed that the intermediate spherical stage of amyloid is more toxic than the final-form fibrils. Their findings are the first to pinpoint sheet formation at the toxic intermediate stage in the misfolding of the Alzheimer's amyloid protein and support the notion that the process of forming the layered sheet structure might be what triggers toxicity and kills nerve cells.

"Our method characterized the detailed molecular structure of this unstable, intermediate species," Ishii said. "To the best of our knowledge, this is the first characterization of detailed molecular structures for toxic amyloid intermediates. We found that the structure was very similar to the final (fibril) form, which wasn't expected at all."

Ishii said a complete determination of the intermediate structure remains to be done, but he is confident his lab will be able to do that. Once completed, the findings may provide pharmaceutical manufacturers with the information they need to create drugs that will prevent interaction between the toxic molecules and nerve cells.

Ishii said the method can also be applied to structural studies of proteins associate with other neurodegenerative diseases, including Parkinson's, and prion diseases, such as Creutzfeldt-Jakob.

"We're also interested in applying our technique in the nanoscience field to examine the formation process of peptide-based nano-assemblies," he said.

The findings were reported online yesterday in Nature Structural & Molecular Biology.

UIC students co-authoring the paper include former doctoral student Sandra Chimon, candidates Medhat Shaibat, Christopher Jones and Buzulagu Aizezi, and former undergraduate Diana Calero.

####

For more information, please click here

Contacts:
Paul Francuch

312-996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizardŽ AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Discoveries

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Announcements

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic