Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cardiff University engineers give industry a moth’s eye view

Abstract:
When a moth flies at night, its eyes need to capture all the light available. To do this, certain species have evolved nanoscopic structures on the surface of their eyes which allow almost no light to reflect off the surface and hence to escape.

Cardiff University engineers give industry a moth’s eye view

UK | Posted on November 26th, 2007

Now scientists at MicroBridge, a project at the Manufacturing Engineering Centre (MEC), have adopted the model to create an industrial lens for use in a low light environment.

The structures on the surface of the new lens are less than 100 nanometres in height (a nanometre is one millionth of a millimetre). They need to be smaller than the wavelength of light to avoid disrupting the light as it enters the lens.

The tiny features of the lens mould were created using the Centre's Focused Ion Beam. The beam uses highly charged atomic particles to machine materials in microscopic detail.

Dr Robert Hoyle of the MEC said: "This was a particularly complicated challenge. Not only did the lenses have to be of very precise curvature but the nanoscopic structures on the lens surfaces had to be smaller than the wavelength of light so as to smooth out the sharp refractive index change as the light strikes the surface of the lens. This smoothing of the refractive index reduces the reflectiveness of the lens thus allowing it to capture more light. The end result has a number of highly practical uses for industry."

The MEC and MicroBridge are now looking at using the lens in optoelectronics and photovoltaic applications in semiconductors, including solar cells, where loss of light is a major problem. The lens also has potential uses in fibre optics, sensors and medical diagnostic devices.

####

For more information, please click here

Contacts:
Miss Emma Darling

+44 (0)29 208 74499
Extension:74499

Copyright © Cardiff University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project