Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MIT: Thermoelectric materials are 1 key to energy savings

Photo / Donna Coveney
Professor Mildred Dresselhaus, in the spectroscopy lab at MIT.
Photo / Donna Coveney
Professor Mildred Dresselhaus, in the spectroscopy lab at MIT.

Abstract:
Researchers jumpstart old field with new approach

MIT: Thermoelectric materials are 1 key to energy savings

Cambridge, MA | Posted on November 20th, 2007

Breathing new life into an old idea, MIT Institute Professor Mildred S. Dresselhaus and co-workers are developing innovative materials for controlling temperatures that could lead to substantial energy savings by allowing more efficient car engines, photovoltaic cells and electronic devices.

Novel thermoelectric materials have already resulted in a new consumer product: a simple, efficient way of cooling car seats in hot climates. The devices, similar to the more-familiar car seat heaters, provide comfort directly to the individual rather than cooling the entire car, saving on air conditioning and energy costs.

The research is based on the principle of thermoelectric cooling and heating, which was first discovered in the early 19th century and was advanced into some practical applications in the 1960s by MIT professor (and former president) Paul Gray, among others.

Dresselhaus and colleagues are now applying nanotechnology and other cutting-edge technologies to the field. She'll describe her work toward better thermoelectric materials in an invited talk on Monday, Nov. 26, at the annual meeting of the Materials Research Society in Boston.

Thermoelectric devices are based on the fact that when certain materials are heated, they generate a significant electrical voltage. Conversely, when a voltage is applied to them, they become hotter on one side, and colder on the other. The process works with a variety of materials, and especially well with semiconductors the materials from which computer chips are made. But it always had one big drawback: it is very inefficient.

The fundamental problem in creating efficient thermoelectric materials is that they need to be very good at conducting electricity, but not heat. That way, one end of the apparatus can get hot while the other remains cold, instead of the material quickly equalizing the temperature. In most materials, electrical and thermal conductivity go hand in hand. So researchers had to find ways of modifying materials to separate the two properties.

The key to making it more practical, Dresselhaus explains, was in creating engineered semiconductor materials in which tiny patterns have been created to alter the materials' behavior. This might include embedding nanoscale particles or wires in a matrix of another material. These nanoscale structures just a few billionths of a meter across interfere with the flow of heat, while allowing electricity to flow freely. "Making a nanostructure allows you to independently control these qualities," Dresselhaus says.

She and her MIT collaborators started working on these developments in the 1990s, and soon drew interest from the US Navy because of the potential for making quieter submarines (power generation and air conditioning are some of the noisiest functions on existing subs). "From that research, we came up with a lot of new materials that nobody had looked into," Dresselhaus says.

After some early work conducted with Ted Harman of MIT Lincoln Labs, Harman, Dresselhaus, and her student Lyndon Hicks published an experimental paper on the new materials in the mid 1990s. "People saw that paper and the field started," she says. "Now there are conferences devoted to it."

Her work in finding new thermoelectric materials, including a collaboration with MIT professor of Mechanical Engineering Gang Chen, invigorated the field, and now there are real applications like seat coolers in cars. Last year, a small company in California sold a million of the units worldwide.

OTHER POTENTIAL APPLICATIONS

The same principle can be used to design cooling systems that could be built right into microchips, reducing or eliminating the need for separate cooling systems and improving their efficiency.

The technology could also be used in cars to make the engines themselves more efficient. In conventional cars, about 80 percent of the fuel's energy is wasted as heat. Thermoelectric systems could perhaps be used to generate electricity directly from this wasted heat. Because the amount of fuel used for transportation is such a huge part of the world's energy use, even a small percentage improvement in efficiency can have a great impact, Dresselhaus explains. "It's very practical," she says, "and the car companies are getting interested."

The same materials might also play a role in improving the efficiency of photovoltaic cells, harnessing some of the sun's heat as well as its light to make electricity. The key will be finding materials that have the right properties but are not too expensive to produce.

Dresselhaus and colleagues are continuing to probe the thermoelectric properties of a variety of semiconductor materials and nanostructures such as superlattices and quantum dots. Her research on thermoelectric materials is presently sponsored by NASA.

####

For more information, please click here

Contacts:
Elizabeth Thomson

617-258-5402

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Discoveries

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Military

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Energy

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Automotive/Transportation

Clean energy future: New cheap and efficient electrode for splitting water March 18th, 2015

Imperfect graphene opens door to better fuel cells: Membrane could lead to fast-charging batteries for transportation March 18th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Quantum Dots/Rods

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Rice fine-tunes quantum dots from coal: Rice University scientists gain control of electronic, fluorescent properties of coal-based graphene March 18th, 2015

Ghent University leads large-scale European training project on quantum dots March 13th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Solar/Photovoltaic

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

Caltech scientists develop cool process to make better graphene March 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE