Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Nanotechnology fibers will revolutionize materials engineering

November 19th, 2007

Nanotechnology fibers will revolutionize materials engineering

Tie a rock to the end of a piece of ribbon, then spin it over your head. It will be pulled taut as the rock circles about. Now, imagine a ribbon 62,000 miles long, anchored near the equator with a weight on the other end. The centrifugal force of the earth's rotation will make it behave the same way. You'll end up with not only the world's biggest nunchuck, but also a kind of elevator to outer space. A space elevator is one of those ideas from 1950s-style futurism that are so whacky they might just work. The single most difficult task in building the Space Elevator is achieving the required tether strength-to-weight ratio - in other words, developing a material that is both strong enough and light enough to support the 60,000 mile long tether. This material has become available in the form of carbon nanotubes (CNTs). The challenge ahead is to weave these raw CNTs into a useful form - a space worthy climbable ribbon. Assembling carbon nanotubes into commercially usable fibers is still one of the many challenges that nanotechnology researchers are faced with when trying to exploit the amazing properties of many nanomaterials. Apart from ambitious large-scale projects like the space elevator, CNT-based fibers will have many applications, from protective fabrics and coatings in military applications, higher performance materials for sports equipment to transparent conductive films and, eventually, as a replacement for copper wire in transmitting electrical power and signals. Researchers in the UK are making good progress in developing scalable fabrication techniques for high performance CNT fibers.


Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


KaSAM-2016: International Conference on Material Sciences has successfully concluded in Pokhara of Western Nepal October 24th, 2016

Move over, solar: The next big renewable energy source could be at our feet October 20th, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoantenna lighting-rod effect produces fast optical switches October 24th, 2016

New nanomedicine approach aims to improve HIV drug therapies October 24th, 2016

New method increases energy density in lithium batteries: Novel technique may lead to longer battery life in portable electronics and electrical vehicles October 24th, 2016

Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016


Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

National Space Society Congratulates Orbital ATK on a Successful Return to Flight for the Antares October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project