Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Making flexible electronics

November 13th, 2007

Making flexible electronics

Abstract:
Laser- and nanoparticle-based processing methods enable high-resolution, maskless fabrication of inexpensive large-area flexible electronics on polymer substrates.

Manufacture of electric circuits on polymer substrates is broadly referred to as flexible electronics and has gained significant interest as a pathway to low-cost or large-area electronics. Although conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics, they are not appropriate for this application. Flexible polymer substrates are chemically incompatible with resists, etchants, and developers used in conventional integrated circuit (IC) processing. In practice, the usual IC fabrication processes involve multiple steps and high processing temperatures and produce toxic waste, all of which add to their cost. Furthermore, the increasing size of electronic devices such as displays poses great difficulty in adapting standard microfabrication techniques, including lithographic patterning.

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

A nano-roundabout for light December 10th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Research partnerships

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project