Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > HHMI Student Profile: Alfredo Celedon

Alfredo Celedon, HHMI NanoBioMed graduate student. Credit: INBT / JHU
Alfredo Celedon, HHMI NanoBioMed graduate student. Credit: INBT / JHU

Nanoparticless open up enormous possibilities for scientists and engineers to study biomolecules, says Alfredo Celedon, a NanoBioMed graduate (pre-doctoral) trainee at the Johns Hopkins University Institute for NanoBioTechnology (INBT).

HHMI Student Profile: Alfredo Celedon

Baltimore, MD | Posted on November 13th, 2007

"The ability to tailor magnetic nanoparticles, connect them to a biomolecule, and use the magnetic nanoparticle to manipulate the molecule is a very powerful concept. It will allow us to study the way different enzymes work, and it may even allow us to use them in new ways," Celedon says. "Proteins are perfect nanomachines, so it would be great to find ways to take advantage of their mechanisms."

The molecule of most interest to Celedon is chromatin, the complex of histone proteins and DNA that make up chromosomes in the nuclei of eukaryotic cells. Celedon is studying the mechanical properties of chromatin by observing chromatin condensation under different biologically relevant conditions.

"If you modify the histones, you change the way the chromatin behaves," Celedon says. "When the chromatin condenses, the structure is tightly held, and there is no access to the DNA. If the chromatin is less condensed, the histones are more loosely held, and access to the DNA is permitted. Cells control gene expression in this way.''

Using nanoparticles and magnetic tweezers, Celedon has been able to exert forces on the chromatin fiber to study its response. He hopes these experiments will shed light on the generally held hypothesis that there is a "histone code" that guides interactions between enzymes and DNA.

Modified histones are prepared in the lab of INBT affiliate Greg Bowman, assistant professor of biophysics at the Krieger School of Arts and Sciences. Magnetic nanoparticles are fabricated in the lab of Peter Searson, professor of materials science and engineering and director of INBT. Experiments using the magnetic tweezers experiments are conducted under an inverted optical microscope in the INBT's laboratory located in the Whiting School of Engineering. Celedon's advisors include INBT affiliate Sean Sun, assistant professor of mechanical engineering, and Denis Wirtz, professor of chemical and biomolecular engineering and INBT's associate director.

"I had previously attempted to model these concepts theoretically," Celedon says. "Through the guidance of my advisors and INBT, we have developed a way to test these


About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University will revolutionize health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 150 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


SUNY Poly’s Center for Semiconductor Research in Albany Earns World-Class TÜV SÜD AMERICA INC. ISO 9001:2015 Certification: Albany NanoTech Complex Certification Assures Top-Tier Quality in Semiconductor Test Structures; Certification a First for a SUNY Campus March 6th, 2018

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017


Unexpected effect could lead to lower-power memory, computing devices March 17th, 2018

Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant March 16th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Jim Barnhart Joins Nanometrics as Senior Vice President of Operations March 15th, 2018

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project