Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Computational modelling allows insights into cell membrane fusion

November 6th, 2007

Computational modelling allows insights into cell membrane fusion

Abstract:
Researchers from France, the UK and Austria have modelled the SNARE protein complex that acts as a catalyst in the fusion of two membranes, using the processing power of the Distributed European Infrastructure for Supercomputing Applications (DEISA). They hope to open up new opportunities for pharmaceutical development.

'Basic research is essential, since there are several aspects concerning the functioning of proteins and cell membranes that are not yet fully understood. A better understanding of these mechanisms will facilitate, for example, the development of new pharmaceutical agents,' explains Dr Marc Baaden, researcher at the Laboratory of Theoretical Biochemistry in Paris. 'By examining a phenomenon at the atomic level, we can gain insight into the behaviour of cell membranes and proteins in general and on a larger scale.'

Many diseases are associated with functional disorders of the cell membranes. In the case studied by Dr Baaden and his colleagues, the cell membranes either do not fuse at all or fuse too heavily. The SNARE protein complex is responsible for this fusion. Disturbed functioning of the SNARE proteins may result in adult-onset diabetes, for example. Hence, understanding the SNARE function may facilitate development of new therapeutic treatments. Apart from medical science, the cosmetics industry and nanotechnology will benefit from a better understanding of protein functioning.

Source:
cordis.europa.eu

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Discoveries

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Announcements

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanobiotechnology

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project