Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > For super-strong nanotechnology dry adhesives look no further than the gecko

November 4th, 2007

For super-strong nanotechnology dry adhesives look no further than the gecko

Abstract:
Animals that cling to walls and walk on ceilings owe this ability to micro- and nanoscale attachment elements. The highest adhesion forces are encountered in geckos. For centuries, the ability of geckos to climb any vertical surface or hang from ceilings with one toe has always generated considerable interest. A gecko is the heaviest animal that can 'stand' on a ceiling, with its feet over its head. This is why scientists are intensely researching the adhesive system of the tiny hairs on its feet. On the sole of a gecko's toes there are some one billion tiny adhesive hairs called setae (3-130 micrometers in length), splitting into even smaller spatulae (about 200 nanometers in both width and length) at the end. It was found that these elastic hairs induce strong van der Waals forces. This finding has prompted many researchers to use synthetic microarrays to mimic gecko feet. Recent work, mainly from A. Dhinojwala, P.M. Ajayan, M. Meyyappan, and L. Dai groups, as well as the Max Planck Institute for Metals Research in Germany (see our previous Spotlight: Gecko nanotechnology) , has indicated that aligned carbon nanotubes (CNTs) sticking out of substrate surfaces showed strong nanometer-scale adhesion forces. Although carbon nanotubes are thousands of times thinner than a human hair, they can be stronger than steel, lighter than plastic, more conductive than copper for electricity and diamond for heat. Applications of such bio-inspired development of artificial dry adhesive systems with aligned carbon nanotubes could range from low-tech fridge magnets to holding together electronics or even airplane parts.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Materials/Metamaterials

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project