Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > The challenge of creating visible and nontoxic nanomaterials for sensing

November 2nd, 2007

The challenge of creating visible and nontoxic nanomaterials for sensing

Abstract:
Nanotechnologies opened a new door towards the development of novel techniques and devices for probing biological systems such as biomolecules and single cells. The most reliable bioprobes today rely on fluorescent or radioactive labeling. Phosphorescent emitters are preferable for use in sensing or biological labeling schemes because the emission occurs over a very long timescale (for nanoscientists, 'very long timescale' is a relative term; here we are talking about 1 microsecond). Especially semiconductor nanocrystals (quantum dots) possess several properties that make them very attractive for fluorescent tagging: broad excitation spectrum, narrow emission spectrum, precise tunability of their emission peak, longer fluorescence lifetime than organic fluorophores and negligible photobleaching. Scientists have discovered that these nanocrystals can enable researchers to study cell processes at the level of a single molecule and may significantly improve the diagnosis and treatment of diseases such as cancers. However, the band gap of most emissive semiconductors, with the exception of cadmium-containing materials, is either too high or too low to easily make visible emitting quantum dots. Unfortunately, cadmium is quite toxic and therefore not really suitable for medical applications. In a step towards circumventing the issues with cadmium toxicity, researchers have make progress in demonstrating visible phosphorescence from doped nanocrystal systems. A recent example is the synthesis of a nanoscopic material composed of the non-toxic elements zinc, selenium, sulfur and manganese which displays efficient visible emission.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Nanobiotechnology

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic