Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > The challenge of creating visible and nontoxic nanomaterials for sensing

November 2nd, 2007

The challenge of creating visible and nontoxic nanomaterials for sensing

Abstract:
Nanotechnologies opened a new door towards the development of novel techniques and devices for probing biological systems such as biomolecules and single cells. The most reliable bioprobes today rely on fluorescent or radioactive labeling. Phosphorescent emitters are preferable for use in sensing or biological labeling schemes because the emission occurs over a very long timescale (for nanoscientists, 'very long timescale' is a relative term; here we are talking about 1 microsecond). Especially semiconductor nanocrystals (quantum dots) possess several properties that make them very attractive for fluorescent tagging: broad excitation spectrum, narrow emission spectrum, precise tunability of their emission peak, longer fluorescence lifetime than organic fluorophores and negligible photobleaching. Scientists have discovered that these nanocrystals can enable researchers to study cell processes at the level of a single molecule and may significantly improve the diagnosis and treatment of diseases such as cancers. However, the band gap of most emissive semiconductors, with the exception of cadmium-containing materials, is either too high or too low to easily make visible emitting quantum dots. Unfortunately, cadmium is quite toxic and therefore not really suitable for medical applications. In a step towards circumventing the issues with cadmium toxicity, researchers have make progress in demonstrating visible phosphorescence from doped nanocrystal systems. A recent example is the synthesis of a nanoscopic material composed of the non-toxic elements zinc, selenium, sulfur and manganese which displays efficient visible emission.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Non-Enzyme Nanosensors Quickly Measure Blood Sugar August 12th, 2014

Sensor Fabrication, Integration, and Commercialization Workshop August 11th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nanobiotechnology

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE