Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MIT develops 'tractor beam' for cells, more--Tool could manipulate tiny objects on a chip

Abstract:
In a feat that seems like something out of a microscopic version of Star Trek, MIT researchers have found a way to use a "tractor beam" of light to pick up, hold, and move around individual cells and other objects on the surface of a microchip.

MIT develops 'tractor beam' for cells, more--Tool could manipulate tiny objects on a chip

Cambridge, MA | Posted on October 30th, 2007

The new technology could become an important tool for both biological research and materials research, say Matthew J. Lang and David C. Appleyard, whose work is being published in an upcoming issue of the journal Lab on a Chip. Lang is an assistant professor in the Department of Biological Engineering and the Department of Mechanical Engineering. Appleyard is a graduate student in Biological Engineering.

The idea of using light beams as tweezers to manipulate cells and tiny objects has been around for at least 30 years. But the MIT researchers have found a way to combine this powerful tool for moving, controlling and measuring objects with the highly versatile world of microchip design and manufacturing.

Optical tweezers, as the technology is known, represent "one of the world's smallest microtools," says Lang. "Now, we're applying it to building [things] on a chip."

Says Appleyard, "We've shown that you could merge everything people are doing with optical trapping with all the exciting things you can do on a silicon wafer…There could be lots of uses at the biology-and-electronics interface."

For example, he said, many people are studying how neurons communicate by depositing them on microchips where electrical circuits etched into the chips monitor their electrical behavior.
"They randomly put cells down on a surface, and hope one lands on [or near] a [sensor] so its activity can be measured. With [our technology], you can put the cell right down next to the sensors." Not only can motions be precisely controlled with the device, but it can also provide very precise measurements of a cell's position.

Optical tweezers use the tiny force of a beam of light from a laser to push around and control tiny objects, from cells to plastic beads. They usually work on a glass surface mounted inside a microscope so that the effects can be observed.

But silicon chips are opaque to light, so applying this technique to them not an obvious move, the researchers say, since the optical tweezers use light beams that have to travel through the material to reach the working surface. The key to making it work in a chip is that silicon is transparent to infrared wavelengths of light - which can be easily produced by lasers, and used instead of the visible light beams.

To develop the system, Lang and Appleyard weren't sure what thickness and surface texture of wafers, the thin silicon slices used to manufacture microchips, would work best, and the devices are expensive and usually available only in quantity. "Being at MIT, where there is such a strength in microfabrication, I was able to get wafers that had been thrown out," Appleyard says. "I posted signs saying, 'I'm looking for your broken wafers'."
After testing different samples to determine which worked best, they were able to order a set that were just right for the work. They then tested the system with a variety of cells and tiny beads, including some that were large by the standards of optical tweezer work. They were able to manipulate a square with a hollow center that was 20 micrometers, or millionths of a meter, across - allowing them to demonstrate that even larger objects could be moved and rotated. Other test objects had dimensions of only a few nanometers, or billionths of a meter. Virtually all living cells come in sizes that fall within that nanometer-to-micrometers range and are thus subject to being manipulated by the system.

As a demonstration of the system's versatility, Appleyard says, they set it up to collect and hold 16 tiny living E. coli cells at once on a microchip, forming them into the letters MIT.

The work was supported by the Biotechnology Training Program of the National Institutes of Health, the W.M. Keck Foundation, and MIT's Lincoln Laboratory.

Written by David Chandler, MIT News Office

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
MIT News Office
Massachusetts Institute of Technology
Room 11-400
77 Massachusetts Avenue
Cambridge, MA 02139-4307
Phone: 617-253-2700

Elizabeth A. Thomson
MIT News Office
617-258-5402

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Discoveries

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Announcements

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Nanobiotechnology

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Drug-delivering nanoparticles seek and destroy elusive cancer stem cells November 28th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project