Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UD researchers race ahead with latest spintronics achievement

Photos by Kathy F. Atkinson
Photos by Kathy F. Atkinson

Abstract:
In a rapid follow-up to their achievement as the first to demonstrate how an electron's spin can be electrically injected, controlled and detected in silicon, electrical engineers from the University of Delaware and Cambridge NanoTech now show that this quantum property can be transported a marathon distance in the world of microelectronics-- through an entire silicon wafer.

UD researchers race ahead with latest spintronics achievement

Newark, DE and Cambridge, MA | Posted on October 26th, 2007

The finding confirms that silicon--the workhorse material of present-day electronics--now can be harnessed up for new-age spintronics applications.

The results, published in the Oct. 26 issue of the American Physical Society's prestigious journal Physical Review Letters, mark another major steppingstone in the pioneering field of spintronics, which aims to use the intrinsic "spin" property of electrons versus solely their electrical charge for the cheaper, faster, lower-power processing and storage of data than present-day electronics can offer.

The research team included Ian Appelbaum, UD assistant professor of electrical and computer engineering, and his doctoral student, Biqin Huang, and Douwe Monsma, of Cambridge NanoTech in Cambridge, Mass. Huang was the lead author of the article.

"Our new result is significant because it means that silicon can now be used to perform many spin manipulations both within the space of thousands of devices and within the time of thousands of logic operations, paving the way for silicon-based spintronics circuits," Appelbaum said.

In Appelbaum's lab at UD, the team fabricated a device that injected high-energy, "hot" electrons from a ferromagnet into the silicon wafer. Another hot-electron structure (made by bonding two silicon wafers together with a thin-film ferromagnet) detected the electrons on the other side.

"Electron spin has a direction, like 'up' or 'down,' " Appelbaum said. "In silicon, there are normally equal numbers of spin-up and -down electrons. The goal of spintronics is to use currents with most of the electron spins oriented, or polarized, in the same direction."

In another recent paper published in the Aug. 13 issue of Applied Physics Letters, the team showed how to attain very high spin polarization, achieving more than 37 percent, and then demonstrated operation as the first semiconductor spin field-effect transistor.
"One hundred percent polarization means that all injected electrons are either spin-up or spin-down," Huang explained. "High polarization will be necessary for practical applications."

"In the future, spintronics may bring a great change to daily life," Huang added.

A native of China, Huang said he feels fortunate to work in Appelbaum's group. When he completes his doctorate next year, Huang hopes to pursue research in industry or academia.

"An alumnus from my undergraduate school in China was studying here at UD and told me this is a great place. I'm happy I made the right decision to come here," Huang noted. "I am also lucky to have a chance to work in Dr. Appelbaum's group. I think an excellent adviser is always the reason for students to be here."

"We're taking the first steps at the beginning of a new road," Appelbaum said. "Before our initial work on spin transport in silicon, we didn't even know where the road was," he said with a smile. "There's a lot of fundamental work to be done, which we hope will bring us closer to a new age of electronics."

Article by Tracey Bryant

####

For more information, please click here

Contacts:
Office of Public Relations
The Academy Building,
105 East Main St.
Newark, DE 19716-2701
(302) 831-2792

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Spintronics

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Chip Technology

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Discoveries

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Announcements

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE