Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UD researchers race ahead with latest spintronics achievement

Photos by Kathy F. Atkinson
Photos by Kathy F. Atkinson

Abstract:
In a rapid follow-up to their achievement as the first to demonstrate how an electron's spin can be electrically injected, controlled and detected in silicon, electrical engineers from the University of Delaware and Cambridge NanoTech now show that this quantum property can be transported a marathon distance in the world of microelectronics-- through an entire silicon wafer.

UD researchers race ahead with latest spintronics achievement

Newark, DE and Cambridge, MA | Posted on October 26th, 2007

The finding confirms that silicon--the workhorse material of present-day electronics--now can be harnessed up for new-age spintronics applications.

The results, published in the Oct. 26 issue of the American Physical Society's prestigious journal Physical Review Letters, mark another major steppingstone in the pioneering field of spintronics, which aims to use the intrinsic "spin" property of electrons versus solely their electrical charge for the cheaper, faster, lower-power processing and storage of data than present-day electronics can offer.

The research team included Ian Appelbaum, UD assistant professor of electrical and computer engineering, and his doctoral student, Biqin Huang, and Douwe Monsma, of Cambridge NanoTech in Cambridge, Mass. Huang was the lead author of the article.

"Our new result is significant because it means that silicon can now be used to perform many spin manipulations both within the space of thousands of devices and within the time of thousands of logic operations, paving the way for silicon-based spintronics circuits," Appelbaum said.

In Appelbaum's lab at UD, the team fabricated a device that injected high-energy, "hot" electrons from a ferromagnet into the silicon wafer. Another hot-electron structure (made by bonding two silicon wafers together with a thin-film ferromagnet) detected the electrons on the other side.

"Electron spin has a direction, like 'up' or 'down,' " Appelbaum said. "In silicon, there are normally equal numbers of spin-up and -down electrons. The goal of spintronics is to use currents with most of the electron spins oriented, or polarized, in the same direction."

In another recent paper published in the Aug. 13 issue of Applied Physics Letters, the team showed how to attain very high spin polarization, achieving more than 37 percent, and then demonstrated operation as the first semiconductor spin field-effect transistor.
"One hundred percent polarization means that all injected electrons are either spin-up or spin-down," Huang explained. "High polarization will be necessary for practical applications."

"In the future, spintronics may bring a great change to daily life," Huang added.

A native of China, Huang said he feels fortunate to work in Appelbaum's group. When he completes his doctorate next year, Huang hopes to pursue research in industry or academia.

"An alumnus from my undergraduate school in China was studying here at UD and told me this is a great place. I'm happy I made the right decision to come here," Huang noted. "I am also lucky to have a chance to work in Dr. Appelbaum's group. I think an excellent adviser is always the reason for students to be here."

"We're taking the first steps at the beginning of a new road," Appelbaum said. "Before our initial work on spin transport in silicon, we didn't even know where the road was," he said with a smile. "There's a lot of fundamental work to be done, which we hope will bring us closer to a new age of electronics."

Article by Tracey Bryant

####

For more information, please click here

Contacts:
Office of Public Relations
The Academy Building,
105 East Main St.
Newark, DE 19716-2701
(302) 831-2792

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Spintronics

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Making spintronic neurons sing in unison November 18th, 2016

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Discoveries

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Research partnerships

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project