Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Video shows buckyballs form by 'shrink wrapping'

Abstract:
Experiments, simulations reveal birth secret of tiny carbon spheres

The birth secret of buckyballs -- hollow spheres of carbon no wider than a strand of DNA -- has been caught on tape by researchers at Sandia National Laboratory and Rice University. An electron microscope video and computer simulations show that "shrink-wrapping" is the key; buckyballs start life as distorted, unstable sheets of graphite, shedding loosely connected threads and chains until only the perfectly spherical buckyballs remain.

Video shows buckyballs form by 'shrink wrapping'

Houston, TX | Posted on October 26th, 2007

The birth secret of buckyballs -- hollow spheres of carbon no wider than a strand of DNA -- has been caught on tape by researchers at Sandia National Laboratory and Rice University. An electron microscope video and computer simulations show that "shrink-wrapping" is the key; buckyballs start life as distorted, unstable sheets of graphite, shedding loosely connected threads and chains until only the perfectly spherical buckyballs remain.

The research is available online and slated to appear in an upcoming issue of Physical Review Letters (PRL). It is among a small number of PRL papers chosen as an "Editors' Suggestion."

Buckyballs were discovered at Rice in 1985, but understanding the intimate details their formation has vexed scientists. Buckyballs form at high temperatures, and one long-standing theory of their genesis is the "hot giant" hypothesis, which suggests that the carbon atoms first assemble by the thousands in flat graphite sheets. Heat distorts the sheets, "shrink wrapping" them into ever-smaller shapes, and buckyballs survive thanks to their perfect symmetry.

"This 'hot evolution' is so rapid that it was nearly impossible to prove or disprove it by experimental observation," said study co-author Boris Yakobson, professor of mechanical engineering and materials science at Rice. "Sandia's Jianyu Huang solved this problem by creating an ingenious, controllable heat bath inside a 10-nanometer-wide nanotube. That allowed him to capture video of giant fullerenes gradually shrinking."

Huang, who performed the experiments while at Boston College and analyzed the data at Sandia, said the results constitute the first experimental evidence for the 'shrink-wrapping' and 'hot-giant' fullerene birth mechanisms.

Huang captured the high-resolution images using a transmission electron microscope (TEM). The video shows a large fullerene, with an estimated 2,000 atoms of carbon gradually shrinking. It confirmed predictions about the atomic mechanisms that Yakobson's team at Rice had made based on detailed computer simulations.

"If heat is sustained, as it was when we took these images, the fullerenes undergo a further shrinking and vanish," Huang said. "This confirms an aspect of 'shrink wrapping' theory that was predicted by Rice's Rick Smalley and Bob Curl made shortly after they discovered fullerenes."

Huang and Yakobson said it may be possible to exploit the findings to control the fullerene formation process and tailor fullerenes for a variety of applications.

Co-authors of the research include research scientist Feng Ding and graduate student Kun Jiao, both of Rice. The research was funded by the Office of Naval Research and the Department of Energy's Center for Integrated Nanotechnologies.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE