Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoballs deliver drugs

Abstract:
Dutch researcher Cristianne Rijcken has developed a new type of biodegradable nanoparticle. The spherical structures can encapsulate various fat-soluble medicines, which makes it easier to target tumour tissue. These nanoballs are highly promising carriers for the controlled release of anticancer drugs. Rijcken recently gained her doctorate for this research from Utrecht University.

Nanoballs deliver drugs

Netherlands | Posted on October 24th, 2007

Anticancer drugs sometimes have very harmful side effects because they do not distinguish between tumours and healthy tissue. However by encapsulating these drugs in nanoparticles, they more frequently end up in the right tissue. Due to the biodegradable nature of the nanoparticles, the drug is only released once the particles break down. The breakdown period can be adjusted by using different components for the nanostructures.

Drug packages

The nanoparticles consist of polyethylene glycol (PEG) chains which are attached to recently developed components: lactic acid derivatives of polymethacrylamides. These new chains possess the unique combined property of biodegradability and heat sensitivity. By simply heating up an aqueous polymer solution, compact spherical nanoparticles smaller than 100 nanometres are spontaneously formed. The properties and life span of Rijcken's so-called ' stabilised micelles' can be completely controlled by changing the components.

Experiments have shown that various types of fat-soluble anticancer drugs could be enclosed in the core of these micelles. The enclosed substances were only released after the lactic acid groups in the polymer had been split off, causing the nanoparticles to fall apart. The stabilised nanoballs accumulated to a larger extent in the tumours of tumour-carrying mice than traditional micelles. The new nanostructures exhibited no side effects and are completely biodegradable, whereas the current products with anticancer drugs often also contain other toxic ingredients.

Further research

Further research is needed to determine the blood circulation and tumour accumulation of drug-containing micelles. Additionally, the development of new components as building blocks for the nanoparticles will allow an even more accurate regulation of the specificity and drug release.

This research was funded by Technology Foundation STW.

####

For more information, please click here

Contacts:
Dr. Cristianne Rijcken

Copyright © Netherlands Organization for Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project