Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Lipid-modulated assembly of magnetized iron-filled carbon nanotubes in millimeter-scale structures

October 15th, 2007

Lipid-modulated assembly of magnetized iron-filled carbon nanotubes in millimeter-scale structures

Abstract:
Biomolecule-functionalized carbon nanotubes (CNTs) combine the molecular recognition properties of biomaterials with the electrical properties of nanoscale solid state transducers. Application of this hybrid material in bioelectronic devices requires the development of methods for the reproducible self-assembly of CNTs into higher-order structures in an aqueous environment. To this end, we have studied pattern formation of lipid-coated Fe-filled CNTs, with lengths in the 1-5 Ám range, by controlled evaporation of aqueous CNT-lipid suspensions. Novel diffusion limited aggregation structures composed of end-to-end oriented nanotubes were observed by optical and atomic force microscopy. Significantly, the lateral dimension of assemblies of magnetized Fe-filled CNTs was in the millimeter range. Control experiments in the absence of lipids and without magnetization indicated that the formation of these long linear nanotube patterns is driven by a subtle interplay between radial flow forces in the evaporating droplet, lipid-modulated van der Waals forces, and magnetic dipole-dipole interactions.

Source:
University of Southampton

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project