Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > High-performance, flexible nanotechnology hydrogen sensors

October 10th, 2007

High-performance, flexible nanotechnology hydrogen sensors

Abstract:
In the (hopefully not too distant) future hydrogen-based economy, hydrogen (H2) sensors will be a critical component for safety and widely needed. For example, H2 sensors will detect leaks from hydrogen-powered cars and fueling stations long before the gas becomes an explosive hazard. But even today a wide range of potential applications for H2 sensors exists, such as sensing H2 buildups in lead acid storage cells found in most vehicles; detecting H2 leaks during petrochemical applications where high pressure H2 is used; detecting impending transformer failure in electric power plants; or monitoring H2 buildup in radioactive waste tanks and in plutonium reprocessing. Another example is the Space Shuttle which uses a combination of hydrogen and oxygen as fuel for its main engines. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. Today, the leakage of hydrogen caused by a tiny pinhole in the pipe of a Space Shuttle could not be easily detected by individual rigid detectors because the locations of pinholes are not predetermined. The problem with most current hydrogen sensor designs is that they are built on rigid substrates, which cannot be bent, and therefore, their applications might be limited due to the mechanical rigidity. In addition, they use expensive, pure palladium. A new type of sensors is bendy and use single-walled carbon nanotubes (SWCNTs) to improve efficiency and reduce cost. In the example of the space shuttle, laminating a dense array of flexible sensors on the whole surface of a pipe can detect any leakage of hydrogen prior to diffusion and alert control units to remedy the malfunction. This use of large-area sensory skins would not significantly increase the overall weight of the Shuttle due to the lightweight nature associated with these flexible sensors. The development of these hydrogen sensors is just another step that will help us ensure economical, environmental and societal safety in using hydrogen as the main fuel source in tomorrow's society.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Doing the nano-shimmy: New device modulates light and amplifies tiny signals April 12th, 2018

Scientists Use Nanotechnology to Detect Molecular Biomarker for Osteoarthritis March 13th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Energy

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project