Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > FSU researchers' material may lead to advances in quantum computing

Crystal structure of the potassium-niobium-oxygen compound doped with chromium ions. Brown arrows show well-separated electron spins. The electromagnetic radiation used to control the spins is shown in black.
Crystal structure of the potassium-niobium-oxygen compound doped with chromium ions. Brown arrows show well-separated electron spins. The electromagnetic radiation used to control the spins is shown in black.

Abstract:
Scientists at Florida State University's National High Magnetic Field Laboratory and the university's Department of Chemistry and Biochemistry have introduced a new material that could be to computers of the future what silicon is to the computers of today.

FSU researchers' material may lead to advances in quantum computing

Posted on October 8th, 2007

The material a compound made from the elements potassium, niobium and oxygen, along with chromium ions could provide a technological breakthrough that leads to the development of new quantum computing technologies. Quantum computers would harness the power of atoms and molecules to perform memory and processing tasks on a scale far beyond those of current computers. The research was recently published in Physical Review Letters, the top journal in physics.

"The field of quantum information technology is in its infancy, and our work is another step forward in this fascinating field," said Saritha Nellutla, a postdoctoral associate at the magnet lab and lead author of the paper.

Semiconductor technology is close to reaching its performance limit. Over the years, processors have shrunk to their current size, with the components of a computer chip more than 1,000 times smaller than the thickness of a human hair. At those very small scales, quantum effects behaviors in matter that occur at the atomic and subatomic levels--can start playing a role. By exploiting those behaviors, scientists hope to take computing to the next level.

In current computers, the basic unit of information is the "bit," which can have a value of 0 or 1. In so-called quantum computers, which currently exist only in theory, the basic unit is the "qubit" (short for quantum bit). A qubit can have not only a value of 0 or 1, but also all kinds of combinations of 0 and 1 including 0 and 1 at the same time meaning quantum computers could perform certain kinds of calculations much more effectively than current ones.

How scientists realize the promise of the theoretical qubit is not clear. Various designs and paths have been proposed, and one very promising idea is to use tiny magnetic fields, called "spins." Spins are associated with electrons and various atomic nuclei.

Magnet lab scientists used high magnetic fields and microwave radiation to "operate" on the spins in the new material they developed to get an indication of how long the spin could be controlled. Based on their experiments, the material could enable 500 operations in 10 microseconds before losing its ability to retain information, making it a good candidate for a qubit.

Putting this spin to work would usher in a technological revolution, because the spin state of an electron, in addition to its charge, could be used to carry, manipulate and store information.

"This material is very promising," said Naresh Dalal, a professor of chemistry and biochemistry at FSU and one of the paper's authors. "But additional synthetic and magnetic characterization work is needed before it could be made suitable for use in a device."

Dalal also serves as an adviser to FSU chemistry graduate student Mekhala Pati, who created the material. The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida.

####

About Florida State University
The Office of Research at Florida State University is committed to creating an environment that is conducive to performing superior research and creative activities. My staff is dedicated to providing university faculty, staff, and students with the support necessary to fulfill FSU's goal of becoming one of the best research universities in the country.

For more information, please click here

Contacts:
Saritha Nellutla, (850) 644-6153


Susan Ray, (850) 644-9651

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project