Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Nanotechnology optimizes catalyst systems

September 23rd, 2007

Nanotechnology optimizes catalyst systems

Abstract:
Back in the early 1800's it was observed that certain chemicals can speed up a chemical reaction - a process that became known as catalysis and that has become the foundation of the modern chemical industry. By some estimates 90% of all commercially produced chemical products involve catalysts at some stage in the process of their manufacture. Catalysis is the acceleration of a chemical reaction by means of a substance, called a catalyst, which is itself not consumed by the overall reaction. The most effective catalysts are usually transition metals or transition metal complexes. An everyday example of catalysis is the catalytic converter in your car which is used to reduce the toxicity of emissions from your car's engine. Here the catalysts are platinum and manganese which for instance convert harmful nitrogen oxides into harmless nitrogen and oxygen. Since catalysts provide a surface for the chemical reaction to take place on, nanoparticles with their extremely large surface area have become much researched as catalysts (as particles get smaller the larger their surface to volume ratio becomes). Especially in heterogeneous catalysis - where the catalyst is in a different phase (ie. solid, liquid and gas) to the reactants, and that is largely influenced by surface properties - use of nanoscale catalysts opens up a number of possibilities of improving catalytic activity and selectivity. Unfortunately, heterogeneous catalysts supported on a carrier prepared using traditional methods (e.g., impregnation) suffer from a number of problems, such as particle aggregation during preparation, sintering during use (especially at high temperatures), and catalyst leaching because of solvent or pressure drop. This is associated with the poor contact of the catalyst particle with the support surface. A new method of catalyst preparation coming out of Singapore may offer a new concept for catalyst optimization.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project