Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Risk Assessment Minor in Development at JHU

Abstract:
Nanotechnology involving materials and devices at extremely small length scales—sometimes just a few atoms wide— is providing novel solutions to health and environmental problems. Nano-sized components are found in hundreds of applications, from targeted cancer therapies to stain-resistant clothing.

Risk Assessment Minor in Development at JHU

Baltimore, MD | Posted on September 17th, 2007

So that the scientists and engineers of the future will be better prepared to answer questions regarding nanotechnology, Johns Hopkins University faculty members specializing in disciplines ranging from engineering to public health are collaborating to develop a new undergraduate minor in nanotechnology risk assessment and public policy. Funding for development comes from a two-year, $200,000 National Science Foundation grant and will be administered through the Johns Hopkins Institute for NanoBioTechnology (INBT). If their work goes as planned, faculty members anticipate that the minor will be ready to accept its first students by the fall of 2009.

Students in the nano-risk minor will explore both the scientific properties of nanomaterials and the public policy ramifications of their use.

"We want them to learn about the potential risks associated with the development of nanotechnological solutions, as well as come to understand the risks presented by not developing some of these nanoscale solutions," says Justin Hanes, associate professor in the Whiting School of Engineering (WSE), who co-authored the grant with Edward Bouwer, WSE professor and director of the Center for Contaminant Transport, Fate, and Remediation, and Jonathan Links, professor in the Bloomberg School of Public Health (BSPH). All are INBT affiliated faculty members.

"Nanoparticles are small enough to cross cell membranes. They also possess a large surface area, which enhances their reactivity," Links says. "However, little research has been done to examine the toxicity potential of these ultrafine particles. Some concerns have been based only on the extrapolation of studies on other substances such as quartz, asbestos or particulate air pollution."

Bouwer adds, "The proposal makes clear that the effects of nanoparticles on public health or the environment are not well understood. The program's goal is to train scientists who are better prepared to lead research, development, and eventual commercialization of safe nanotechnologies."

The new minor will likely involve a suite of courses on topics such as risk science and public policy; nanotechnology ethics, law and policy; environmental engineering; emerging environmental issues; environmental health; public health; and public health toxicology. Faculty members who will develop or teach the courses are affiliates of INBT, WSE, and BSPH, as well as the Risk Sciences and Public Policy Institute, Berman Institute of Bioethics, Center for Law and the Public's Health, and Center for Educational Outreach (CEO).

"The program complements with the large group of students in the Public Health Studies major who also explore environmental health, health policy and other public health-related topics, but from a broader perspective," says James Yager, senior associate dean for academic affairs at BSPH.

A new course to be offered in the spring of 2008—Nanobiotechnology 101—and developed by INBT co-directors Peter Searson, professor of Materials Science and Engineering and Denis Wirtz, professor of Chemical and Biomolecular Engineering, will likely be a prerequisite of the nano-risk minor. Searson is excited to have INBT serve as host to the new undergraduate minor.

"The combination of leading faculty from across disciplines in the University exemplifies the mission of INBT by blending and leveraging expertise," Searson says. "It is a marvelous opportunity to bring together pre-existing, but largely separate, activities in nanotechnology within the university to impact our students and beyond."

Additional INBT Training Opportunities

In addition to this new minor, INBT administers three other educational programs including the graduate Nano-Bio Medicine program funded by the Howard Hughes Medical Institute, the Integrative Graduate Education and Research Traineeship in Nanobiotechnology funded by the National Science Foundation, and a summer Research Experience for Undergraduates program.

Part of the proposal for the nano-risk minor requires that students from these graduate training programs be involved by training of K-12 classroom instructors through the Center for Educational Outreach (CEO). CEO will translate components of the coursework for use in science, technology, engineering, and mathematics curriculums in underprivileged school settings.

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University will revolutionize health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 140 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:
* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218
* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Safety-Nanoparticles/Risk management

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project