Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Gutenberg's grandchildren in nanotechnology labs

September 4th, 2007

Gutenberg's grandchildren in nanotechnology labs

Abstract:
When Gutenberg built his printing machine with moveable type in the mid 15th century, little idea did he have that he started the information age; even less that scientists would adopt the process to the nanoscale. The printing press went through several revolutionary improvements such as Lanston's monotype machine (1884), Mergenthaler's linotype machine (1886), the photo-typesetting process developed in the 1960s and finally digital printing in the 1980s. Today, printing is the most widespread technology to deposit small particles onto various surfaces. Commercial desktop laser printers use toner particles with a few microns in size while top of the line high-priced industrial printing machines sometimes already use sub-micron size particles. On the other hand, the precise positioning of nanoparticles on surfaces is key to most nanotechnology applications especially nanoelectronics. However, for automated patterning of particles, existing methods are either slow (e.g., dip-pen lithography) or require prefabricated patterns on the target substrate (e.g. for electrostatic positioning). Using a process akin to the printing press, researchers already have managed to bypass the need for epitaxial growth or wafer bonding to integrate wide ranging classes of dissimilar semiconducting nanomaterials onto substrates for the purpose of constructing heterogeneous, three dimensional electronics (see our Spotlight Gutenberg + nanotechnology = printable electronics). Scientist in Switzerland have now developed a parallel method for the assembly and integration of a large number of bulk-synthesized nanoparticles onto an unstructured surface with high resolution and yield.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project