Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The next generation: Nanomagnets could replace semiconductors

Abstract:
Computer Engineering Professor at UH Receives NSF Grant to Partner with UC-Riverside, Seagate Technology

The next generation: Nanomagnets could replace semiconductors

HOUSTON, TX | Posted on August 29th, 2007

Just as compact discs all but wiped out vinyl records, semiconductors could be on their way out, too.

A University of Houston professor has developed a similar ‘disruptive technology,' using magnetic cellular networks, that could yield such benefits as increased computing power that rivals what is possible with semiconductor integrated circuits.

Integrated circuits, which are a microscopic array of electronic circuits and components that have been implanted on the surface of a single chip of semiconducting material, have become the principal components of almost all electronic devices. Compared to the vacuum tubes and transistors that preceded them, integrated circuits have provided a low-cost, highly reliable way for computers to respond to a wider range of input and produce a wider range of output.

Dmitri Litvinov, associate professor of electrical and computer engineering and of chemical and biomolecular engineering in the Cullen College of Engineering at UH, is working with specially arranged assemblies of nanomagnets, or magnetic cellular networks, to replace conventional circuitry and significantly improve computing operations. His research involves a system of interacting magnetic nanocells that could combine logic, random access memory and data storage in a single nanomagnetic computing system.

Working from logic gates, which are at the heart of a computer's ability to add, subtract, multiply and divide, Litvinov wants to demonstrate that the magnetization of adjacent magnets is possible and can be used to perform specific logic and computing operations, reversing the repulsive and attractive poles of magnets.

"The significance is potentially ultra-high density of magnetic computing components for significantly higher computing power beyond what is expected to be achievable with semiconductor integrated circuits," said Litvinov, who also is the director of the Center for Nanomagnetic Systems at UH. "Additional benefits include potential integration with magnetic random access memory that would result in all-magnetic computing, as well as extreme robustness, or resilience, against radiation that could be critical for space missions or military applications."

Funded by a $360,000 grant from the National Science Foundation's Grant Opportunities for Academic Liaison with Industry (GOALI) initiative, Litvinov, the principal investigator on this project, is working with co-PI Sakhrat Khizroev of the University of California-Riverside. The two have successfully implemented a number of nanomagnetic concepts and rapid prototyping approaches in commercial magnetic data storage systems, many of which are directly applicable to this project. Also involved in this research is co-PI Song Xue of Seagate Technology, a major American manufacturer of hard drives and the largest magnetic information technology company in the world. Xue is strategically positioned to deliver key technology components, such as access to advanced device fabrication, to facilitate this research and bring industrial insight to the project.

GOALI is a program that connects universities and industry for mutual benefit, reflecting the NSF's objective to improve the nation's capacity for intellectual and economic growth. Launched in 1993 and expanded in 1996 to include all NSF directorates, GOALI aims to improve productivity and enhance competitiveness. By the NSF serving as a catalyst for industry-university partnerships through this type of grant, it helps bring together intellectual capital and emerging technologies to improve quality of life, making funds available to support an eclectic mix of academic and commercial linkages.

"The long-term potential of developing integrated magnetic computing systems such as ours could foster a significant advance in information processing that rivals not just superconductors, but also the integrated circuit revolution of the past half century," Litvinov said. "It's an ideal fit with the NSF's GOALI initiative, since this program only funds projects with demonstrated interest from industry and seeks out projects such as ours with a potentially profound impact on the world's economic, political and social systems."

####

About University of Houston
The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.

About the Cullen College of Engineering
UH Cullen College of Engineering has produced five U.S. astronauts, ten members of the National Academy of Engineering, and degree programs that have ranked in the top ten nationally. With more than 2,600 students, the college offers accredited undergraduate and graduate degrees in biomedical, chemical, civil and environmental, electrical and computer, industrial, and mechanical engineering. It also offers specialized programs in aerospace, materials, petroleum engineering and telecommunications.

For more information about UH, visit the university’s Newsroom at
http://www.uh.edu/newsroom .

To receive UH science news via e-mail, visit
http://www.uh.edu/admin/media/sciencelist.html .

For more information, please click here

Contacts:
Lisa Merkl
713/743-8192 (office)
713/605-1757 (pager)

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Discoveries

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Announcements

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

Research partnerships

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project