Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The next generation: Nanomagnets could replace semiconductors

Abstract:
Computer Engineering Professor at UH Receives NSF Grant to Partner with UC-Riverside, Seagate Technology

The next generation: Nanomagnets could replace semiconductors

HOUSTON, TX | Posted on August 29th, 2007

Just as compact discs all but wiped out vinyl records, semiconductors could be on their way out, too.

A University of Houston professor has developed a similar ‘disruptive technology,' using magnetic cellular networks, that could yield such benefits as increased computing power that rivals what is possible with semiconductor integrated circuits.

Integrated circuits, which are a microscopic array of electronic circuits and components that have been implanted on the surface of a single chip of semiconducting material, have become the principal components of almost all electronic devices. Compared to the vacuum tubes and transistors that preceded them, integrated circuits have provided a low-cost, highly reliable way for computers to respond to a wider range of input and produce a wider range of output.

Dmitri Litvinov, associate professor of electrical and computer engineering and of chemical and biomolecular engineering in the Cullen College of Engineering at UH, is working with specially arranged assemblies of nanomagnets, or magnetic cellular networks, to replace conventional circuitry and significantly improve computing operations. His research involves a system of interacting magnetic nanocells that could combine logic, random access memory and data storage in a single nanomagnetic computing system.

Working from logic gates, which are at the heart of a computer's ability to add, subtract, multiply and divide, Litvinov wants to demonstrate that the magnetization of adjacent magnets is possible and can be used to perform specific logic and computing operations, reversing the repulsive and attractive poles of magnets.

"The significance is potentially ultra-high density of magnetic computing components for significantly higher computing power beyond what is expected to be achievable with semiconductor integrated circuits," said Litvinov, who also is the director of the Center for Nanomagnetic Systems at UH. "Additional benefits include potential integration with magnetic random access memory that would result in all-magnetic computing, as well as extreme robustness, or resilience, against radiation that could be critical for space missions or military applications."

Funded by a $360,000 grant from the National Science Foundation's Grant Opportunities for Academic Liaison with Industry (GOALI) initiative, Litvinov, the principal investigator on this project, is working with co-PI Sakhrat Khizroev of the University of California-Riverside. The two have successfully implemented a number of nanomagnetic concepts and rapid prototyping approaches in commercial magnetic data storage systems, many of which are directly applicable to this project. Also involved in this research is co-PI Song Xue of Seagate Technology, a major American manufacturer of hard drives and the largest magnetic information technology company in the world. Xue is strategically positioned to deliver key technology components, such as access to advanced device fabrication, to facilitate this research and bring industrial insight to the project.

GOALI is a program that connects universities and industry for mutual benefit, reflecting the NSF's objective to improve the nation's capacity for intellectual and economic growth. Launched in 1993 and expanded in 1996 to include all NSF directorates, GOALI aims to improve productivity and enhance competitiveness. By the NSF serving as a catalyst for industry-university partnerships through this type of grant, it helps bring together intellectual capital and emerging technologies to improve quality of life, making funds available to support an eclectic mix of academic and commercial linkages.

"The long-term potential of developing integrated magnetic computing systems such as ours could foster a significant advance in information processing that rivals not just superconductors, but also the integrated circuit revolution of the past half century," Litvinov said. "It's an ideal fit with the NSF's GOALI initiative, since this program only funds projects with demonstrated interest from industry and seeks out projects such as ours with a potentially profound impact on the world's economic, political and social systems."

####

About University of Houston
The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.

About the Cullen College of Engineering
UH Cullen College of Engineering has produced five U.S. astronauts, ten members of the National Academy of Engineering, and degree programs that have ranked in the top ten nationally. With more than 2,600 students, the college offers accredited undergraduate and graduate degrees in biomedical, chemical, civil and environmental, electrical and computer, industrial, and mechanical engineering. It also offers specialized programs in aerospace, materials, petroleum engineering and telecommunications.

For more information about UH, visit the university’s Newsroom at
http://www.uh.edu/newsroom .

To receive UH science news via e-mail, visit
http://www.uh.edu/admin/media/sciencelist.html .

For more information, please click here

Contacts:
Lisa Merkl
713/743-8192 (office)
713/605-1757 (pager)

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Discoveries

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project