Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon nanoparticles enhance performance of solar cells

Abstract:
Placing a film of silicon nanoparticles onto a silicon solar cell can boost power, reduce heat and prolong the cell's life, researchers now report.

Silicon nanoparticles enhance performance of solar cells

Champaign, IL | Posted on August 20th, 2007

"Integrating a high-quality film of silicon nanoparticles 1 nanometer in size directly onto silicon solar cells improves power performance by 60 percent in the ultraviolet range of the spectrum," said Munir Nayfeh, a physicist at the University of Illinois and corresponding author of a paper accepted for publication in Applied Physics Letters.

A 10 percent improvement in the visible range of the spectrum can be achieved by using nanoparticles 2.85 nanometers in size, said Nayfeh, who also is a researcher at the university's Beckman Institute.

In conventional solar cells, ultraviolet light is either filtered out or absorbed by the silicon and converted into potentially damaging heat, not electricity. In previous work, however, Nayfeh showed that ultraviolet light could efficiently couple to correctly sized nanoparticles and produce electricity. That work was reported in the August 2004 issue of the journal Photonics Technology Letters.

To make their improved solar cells, the researchers began by first converting bulk silicon into discrete, nano-sized particles using a patented process they developed. Depending on their size, the nanoparticles will fluoresce in distinct colors.

Nanoparticles of the desired size were then dispersed in isopropyl alcohol and dispensed onto the face of the solar cell. As the alcohol evaporated, a film of closely packed nanoparticles was left firmly fastened to the solar cell.

Solar cells coated with a film of 1 nanometer, blue luminescent particles showed a power enhancement of about 60 percent in the ultraviolet range of the spectrum, but less than 3 percent in the visible range, the researchers report.

Solar cells coated with 2.85 nanometer, red particles showed an enhancement of about 67 percent in the ultraviolet range, and about 10 percent in the visible.

The improved performance is a result of enhanced voltage rather than current, Nayfeh said. "Our results point to a significant role for charge transport across the film and rectification at the nanoparticle interface."

The process of coating solar cells with silicon nanoparticles could be easily incorporated into the manufacturing process with little additional cost, Nayfeh said.

With Nayfeh, the paper's co-authors are graduate student and lead author Matthew Stupca at Illinois, professor Mohamed Alsalhi at King Saud University in Saudi Arabia, and professors Turki Al Saud and Abdulrahman Almuhanna, both at the King Abdulaziz City for Science and Technology in Saudi Arabia.

The research was funded by the National Science Foundation, the state of Illinois, the Grainger Foundation and the University of Illinois.

####

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic