Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silicon nanoparticles enhance performance of solar cells

Abstract:
Placing a film of silicon nanoparticles onto a silicon solar cell can boost power, reduce heat and prolong the cell's life, researchers now report.

Silicon nanoparticles enhance performance of solar cells

Champaign, IL | Posted on August 20th, 2007

"Integrating a high-quality film of silicon nanoparticles 1 nanometer in size directly onto silicon solar cells improves power performance by 60 percent in the ultraviolet range of the spectrum," said Munir Nayfeh, a physicist at the University of Illinois and corresponding author of a paper accepted for publication in Applied Physics Letters.

A 10 percent improvement in the visible range of the spectrum can be achieved by using nanoparticles 2.85 nanometers in size, said Nayfeh, who also is a researcher at the university's Beckman Institute.

In conventional solar cells, ultraviolet light is either filtered out or absorbed by the silicon and converted into potentially damaging heat, not electricity. In previous work, however, Nayfeh showed that ultraviolet light could efficiently couple to correctly sized nanoparticles and produce electricity. That work was reported in the August 2004 issue of the journal Photonics Technology Letters.

To make their improved solar cells, the researchers began by first converting bulk silicon into discrete, nano-sized particles using a patented process they developed. Depending on their size, the nanoparticles will fluoresce in distinct colors.

Nanoparticles of the desired size were then dispersed in isopropyl alcohol and dispensed onto the face of the solar cell. As the alcohol evaporated, a film of closely packed nanoparticles was left firmly fastened to the solar cell.

Solar cells coated with a film of 1 nanometer, blue luminescent particles showed a power enhancement of about 60 percent in the ultraviolet range of the spectrum, but less than 3 percent in the visible range, the researchers report.

Solar cells coated with 2.85 nanometer, red particles showed an enhancement of about 67 percent in the ultraviolet range, and about 10 percent in the visible.

The improved performance is a result of enhanced voltage rather than current, Nayfeh said. "Our results point to a significant role for charge transport across the film and rectification at the nanoparticle interface."

The process of coating solar cells with silicon nanoparticles could be easily incorporated into the manufacturing process with little additional cost, Nayfeh said.

With Nayfeh, the paper's co-authors are graduate student and lead author Matthew Stupca at Illinois, professor Mohamed Alsalhi at King Saud University in Saudi Arabia, and professors Turki Al Saud and Abdulrahman Almuhanna, both at the King Abdulaziz City for Science and Technology in Saudi Arabia.

The research was funded by the National Science Foundation, the state of Illinois, the Grainger Foundation and the University of Illinois.

####

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project