Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Artificial nanopores take analyte pulse

July 31st, 2007

Artificial nanopores take analyte pulse

Abstract:
Resistive pulse sensing represents a very attractive method for identifying and quantifying biomedical species such as drugs, DNA, proteins, and viruses in solution. This method involves measuring changes in the ionic current across a membrane containing a single nanometer-sized pore that separates two electrolyte solutions. As the biological analytes make their way through the pore, they induce transient downward current pulses in the ionic current by transiently blocking the nanopore.

The frequency, duration, and magnitude of the current pulse contain telltale information that aids the identification and quantification of the analyte. A biological nanopore, α-hemolysin, supported by a lipid bilayer membrane, works well in the detection of various analytes. However, a major impediment to this system is its lack of mechanical robustness. Indeed, these biological membranes tend to rupture within a few hours, thus precluding their application in practical sensing devices.

Now a team of researchers at the University of Florida have come up with a major breakthrough that will aid the reproducible fabrication of robust synthetic single-nanopore membranes ("A Method for Reproducibly Preparing Synthetic Nanopores for Resistive-Pulse Biosensors").

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE