Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Malvern rheometer in continuing search for perfect silk

Jumping spider devouring tropical caterpillar

PHOTO CREDIT: 2007 Oxford Silk Group
Jumping spider devouring tropical caterpillar PHOTO CREDIT: 2007 Oxford Silk Group

In work published in the journal Polymer (June 2007) Oxford researchers have taken an important step towards understanding why it has been impossible to artificially spin protein fibres with the superb material properties of their natural models, the silks of spiders and silkworms.

Malvern rheometer in continuing search for perfect silk

Malvern, UK | Posted on June 7th, 2007

Using a Bohlin Gemini HR Nano rheometer from Malvern Instruments, Chris Holland and Professor Fritz Vollrath, together with Dr Ann Terry and Dr David Porter, took unspun natural silk dope and compared it to artificial silk dope under shear forces similar to those encountered in a natural spinning duct. Optimized for the control of ultra-low torques, the Gemini HR nano is ideal for probing sensitive material structures and allowing measurement of low volume samples. The research group discovered fundamental differences in kind, not just in degree, between the natural and artificial silk dopes.

This research builds on previous work by the Oxford group, which demonstrated that the flow characteristics of native spider and silkworm dopes are very similar despite the independent evolution of the two silks. Such convergence of the two distinct materials towards an identical flow behaviour strongly suggests that dope rheology is a key to the production of high-performance protein fibres

Native silk dope taken straight from the gland can easily be drawn into strong fibres, but the fibres from artificial dope cannot be spun into any type of serious filament without unnatural treatment using strong chemicals. Clearly, native silk dopes have the innate ability to form into a fibre, which is lost in translation when attempting to create artificial silk dope. Discovering the mechanisms behind this seemingly effortless process will be a crucial step towards the biomimetic spinning of artificial silk fibres using the animal's own technology. For further details of the research work visit: and

Research paper reference: Holland, C., Terry, A.E., Porter, D. & Vollrath .F. Natural and Unnatural Silks. Polymer 48, 3388 - 3392 (2007)

Author contact: Chris Holland (University of Oxford, UK) Tel: +44 1865 271216; E-mail


About Malvern Instruments
Malvern Instruments is a global company that develops, manufactures and markets advanced analytical systems used in characterizing a wide variety of materials, from bulk powders to the latest nanomaterials and delicate macromolecules. Innovative technologies and powerful software produce systems that deliver industrially relevant data enabling customers to make the connection between micro (eg particle size) and macro (bulk) material properties (rheology) and chemical composition (chemical imaging). Malvern laboratory, on-line and in-line solutions are proven in sectors from cement to pharmaceuticals and support the understanding, improvement and optimization of many industrial processes.

Headquartered in Malvern, UK, the company has subsidiary organizations in all major European markets, North America, China, Korea and Japan, key partnerships in India, a global distributor network and a number of applications laboratories around the world.

For more information, please click here

Trish Appleton
Kapler Communications
Suite 2, Cressner House
12 Huntingdon Street
St Neots, Cambs PE19 1BD UK
Tel: +44 (0) 1480 471117
Fax: +44 (0) 1480 471118

USA contact:
Marisa Fraser
Malvern Instruments Inc
10 Southville Road
Southborough, MA 01772, USA
Tel: +1 508 480 0200
Fax: +1 508 460 9692

Please send sales enquiries to:
Alison Vines
Malvern Instruments Ltd
Enigma Business Park, Grovewood Road
Malvern, Worcestershire WR14 1XZ UK
Tel: +44 (0) 1684 892456
Fax: +44 (0) 1684 892789

Copyright © Malvern Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Photonic “sintering” may create new solar, electronics manufacturing technologies December 1st, 2015

Graphene-Coated Wearable 'E-Textile' Can Alert Wearer To Presence Of Dangerous Gases December 1st, 2015

IU chemists craft molecule that self-assembles into flower-shaped crystalline patterns:'Tricarb' research laid foundation for university's new $1.2 million materials science grant from National Science Foundation December 1st, 2015

Researchers from Deakin and Drexel develop super-absorbent material to soak up oil spills November 30th, 2015


CEA-Leti to Share Insights into Post-7-nanometer Technologies At Workshop Prior to IEDM in Washington, D.C.: Research Includes CMOS Device Architectures, New Materials and Computing System Paradigms December 1st, 2015

Nano-walkers take speedy leap forward with first rolling DNA-based motor: Fastest DNA motor holds potential for disease diagnostics December 1st, 2015

UTA researcher to build internal nanotechnology device to simplify blood sugar testing: Medical technologies December 1st, 2015

Graphene-Coated Wearable 'E-Textile' Can Alert Wearer To Presence Of Dangerous Gases December 1st, 2015


Renishaw’s inVia confocal Raman microscope connects to Bruker’s Dimension Icon AFM November 30th, 2015

Tiny octopods catalyze bright ideas: Rice-led study shows plasmonic sensors and catalysts need not be mutually exclusive November 30th, 2015

RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Medical and aerospace electronics powered by Picosun ALD November 26th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic