Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > How to Grow Glass Nanotubes, Naturally

May 30th, 2007

How to Grow Glass Nanotubes, Naturally

Abstract:
Scientists from France have stumbled upon an interesting, almost spontaneous process to create silica nanotubes.

From the Centre National de la Recherche Scientifique announcement:

The vertebral skeleton is probably the most remarkable example of the efficiency of living organisms in forming robust structures which closely combine organic and mineral materials, in this case calcium phosphate. However, in the submarine environment, numerous and frequently single-cell organisms can achieve similar exploits by using silica to produce carapaces and spines to protect themselves, or spicules that are fibers which direct light to their neurons as effectively as the best optical fibers. With a complex architecture and shape, these natural structures are even more astonishing in that they develop spontaneously in water under moderate conditions of temperature and pressure, according to mechanisms which are still largely unknown. This feat is a dream for chemists who are often obliged to heat, extrude or compress materials under aggressive conditions in order to endow them with a shape.

Source:
medgadget.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic