Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Targeted nanoparticles incorporating siRNA offer promise for cancer treatment

Abstract:
The use of targeted nanoparticles offers promising techniques for cancer treatment. Researchers in the laboratory of Mark E. Davis at the California Institute of Technology have been using small interfering RNA (siRNA), sometimes known as silencing RNA, to "silence" specific genes that are implicated in certain malignancies. One of the primary challenges associated with this type of therapy is delivering the therapeutic agent into the body and then to the tumor in a safe and effective manner. By using targeted nanoparticles, researchers have demonstrated that systemically delivered siRNA can slow the growth of tumors in mice without eliciting the toxicities often associated with cancer therapies. The results of this research are being presented this week at the NSTI Nanotech 2007 Conference in Santa Clara, CA.

Targeted nanoparticles incorporating siRNA offer promise for cancer treatment

SANTA CLARA, CA | Posted on May 20th, 2007

The Caltech researchers have incorporated siRNA into nanoparticles that are formed completely by self-assembly, characterized the behavior of these nanoparticles and studied their safety and efficacy in mice.

Using extensive physicochemical and biological characterization, the investigators are able to estimate the composition of individual nanoparticles and to correlate the nanoparticle structure with its biological function. This quantitative approach provides unique insights into the design of more effective nanoparticle carriers.

According to the lead author of the study, Derek W. Bartlett, "Safe and effective delivery remains perhaps the greatest impediment to the clinical realization of small interfering RNA (siRNA) in cancer therapy. Formation of siRNA nanoparticles using cyclodextrin-containing polycations is one of the most promising strategies for systemic siRNA delivery, and such nanoparticles are expected to enter Phase I clinical trials by late 2007. Our most recent work examines the impact of various dosing schedules and surface modifications on the efficacy of these siRNA nanoparticles in preclinical cancer models. By combining the experimental data with a mathematical model of siRNA-mediated gene silencing, we illustrate several practical considerations that we believe will be directly relevant to the clinical application of siRNA-based therapeutics in cancer therapy."


The presentation is "Characterization and in vivo efficacy of targeted nanoparticles for systemic siRNA delivery to tumors" by D.W. Bartlett and M.E. Davis, from the California Institute of Technology. It will be presented at the NSTI Nanotech 2007 conference in Santa Clara, CA on May 21, 2007, 4:40 PM, Great America 3, Santa Clara Convention Center.

####

For more information, please click here

Contacts:
Jami Walker

314-579-3342

Copyright © Elsevier Health Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Events/Classes

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Imec and Holst Centre Introduce World’s First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project