Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > BASF opens Organic Electronics R&D center in Singapore

Abstract:
• Expansion of research activities to reinforce commitment to innovation

• Embarks on Organic Photovoltaics project with IMRE

BASF opens Organic Electronics R&D center in Singapore

Singapore | Posted on May 14th, 2007

BASF said today it is investing about S$4 million to set up a new research and development center for Organic Electronics in Singapore as part of the expansion plan of its research activities in Asia Pacific. BASF has embarked on a new project on Organic Photovoltaics with the Institute of Materials Research and Engineering (IMRE) in the center.

"Chemistry is the lifeblood of innovation. We at BASF firmly believe that innovation helps our customers succeed and reinforces our leading position in the chemicals industry. In our research and development center in Singapore, we will focus in future on two important growth clusters: nanotechnology and energy management. This new research activity of Organic Electronics expands our global R&D platform and fosters further interdisciplinary cooperation," said Dr. Martin Brudermueller, Member of the Executive Board of BASF responsible for Asia Pacific. "Our investment underlines our firm commitment to Singapore and will generate innovation for our customers in Asia Pacific and other regions."

Opening the new research center, Mr. Lim Siong Guan, Chairman of the Singapore Economic Development Board said: "In many ways, Singapore and BASF share the same beliefs. We both put innovation and research high on our many priorities for future growth. We are glad that BASF has chosen Singapore to expand its upstream research activities with this second center. It says a lot about Singapore's research landscape."

The new research center for organic electronics follows the S$6 million initial investment in the BASF Competence Center for Nanostructured Surfaces announced in April 2006. Between 2006 and 2009, the total research expenditure for both centers is expected to be S$30 million.

In these research centers, BASF will hire a total of 40 employees by the end of 2007. Most of these are research scientists and research officers with outstanding qualifications and experience in chemistry and physics. BASF has around 300 employees working in about 20 R&D sites across the Asia Pacific region.

Dr. Florian Doetz, head of the Organic Electronics laboratory in Singapore said, "Singapore is strategically situated in the heart of a world-class, well-connected environment with a strong and stable infrastructure and a strategic focus in R&D. We are convinced that the huge future market size predicted for the technology Organic Electronics will translate into high growth potential for BASF."

The Organics Electronics lab is a shared technology platform that cuts across BASF's growth clusters Energy Management and Nanotechnology. It will undertake research activities in the areas of Printed Electronics, OLEDs (Organic Light Emitting Diodes), Organic Biosensors and Organic Photovoltaics.

Printed Electronics are expected to provide a powerful path to low-cost manufacturing of integrated transistor circuits for a broad spectrum of applications such as radio frequency identification (RFID) tags and backplanes for displays. Organic Biosensors will find their applications in so called "Lab on a chip" devices. These concepts have drawn significant attention to the field of medicinal diagnostics due to an increasing need of biological analytics in the last years. Potential applications range from glucose sensors for diabetics to bacteria detection in food control. Improved materials performance is seen as a key to enable Organic Electronics applications.

OLEDS offer new options for the display and lighting industries. OLEDS are flat, thin light-emitting devices made from organic semiconductive materials. They produce widely distributed light making them very suitable both for lighting and backlighting (LCD) and clearly distinguishing them from conventional point sources of light. In Organic Photovoltaics BASF cooperates with the Institute of Materials Research and Engineering (IMRE), a member of the Agency for Science, Technology and Research (A*STAR). The target of the cooperation is the development of innovative devices based on BASF materials. Such devices will be used in portable and building related applications.

####

Contacts:
Mary Placido
t 415.274.7902
f 415.274.7933

Copyright © Singapore EDB

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Jobs

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Participate in the development of Malaysia’s National Graphene Action Plan 2020 October 10th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Announcements

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Nanobiotechnology

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

Solar/Photovoltaic

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project