Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Commencement 2007: Engineering a Sustainable Future

As an Eagle Scout, it is no surprise that Gregory Ten Eyck would be an innovator with a deep respect for the environment. But he has taken these values to a whole new level, developing inventions that could lead to better fuel cells, reduce the impacts of carbon dioxide, and create the next generation of super-efficient microelectronics.

Commencement 2007: Engineering a Sustainable Future

Troy, NY | Posted on May 1st, 2007

Ten Eyck will receive a Ph.D. in electrical engineering at Rensselaer Polytechnic Institute's 201st Commencement on May 19.

The son of an Air Force officer, Ten Eyck spent his early childhood moving around the country. His family eventually settled in Maryland, where he went through junior and senior high school.

It seems that Ten Eyck was born to be an electrical engineer. His family, including an older brother and two older step-sisters, always looked to him to fix everything from the VCR to the microwave. He recalls being the family's go-to guy on anything electronic, and he still gets late-night calls for computer tech support.

He earned his bachelor's in electrical engineering from Virginia Tech, and then co-founded a company that built photonic and micromachined components. The company would grow to include more than 225 employees. After this experience, Ten Eyck decided to pursue his Ph.D. and was accepted to Rensselaer in 2003.

While at Rensselaer, Ten Eyck became a Graduate Assistant in Areas of National Need (GAANN) fellow. This prestigious fellowship through the U.S. Department of Education has paid for his entire graduate education and given him the freedom to pursue his own research. He also was a fellow in Rensselaer's Integrative Graduate Education and Research Traineeship (IGERT) program in terahertz research, which is funded by the National Science Foundation. Both programs are managed by Gwo-Ching Wang, professor and chair of physics, applied physics, and astronomy. Ten Eyck worked closely with Wang during his time at Rensselaer, along with his primary research advisor Toh-Ming Lu, the R.P. Baker Distinguished Professor of Physics.

Ten Eyck's research focuses on the deposition of extremely thin metal films. He has invented three methods that could have broad implications for the next generation of microelectronics, as well as applications in energy and the environment. His innovations made him a finalist for Rensselaer's first-ever Lemelson-Rensselaer Student Prize and have earned him the respect of researchers in his field and in industry.

First, Ten Eyck developed a method to deposit metals on polymers. This application of atomic layer deposition (ALD) has been envisioned by scientists for years as a way to improve circuit function and reduce circuit size, but it has never been accomplished. Ten Eyck's ALD process could enable industry to create devices that were thought to be years in the future.

Using his expertise in metal ALD, Ten Eyck also learned to create large metal surfaces with thin, uniform layers of metal over a porous insulating material to create a highly efficient energy storing surface. He then took this invention a big step further, creating a surface that could combine carbon dioxide with hydrogen to form methane gas at room temperature.

Such a conversion normally requires temperatures upward of 300 degrees Celsius. This key breakthrough has the potential to transform greenhouse gases into useful natural gas. The process could allow for the production of new energy storage devices and conversion technologies such as fuel cells.

Finally, Ten Eyck has envisioned a novel way of connecting circuits that greatly reduces the size of the circuit and can improve device performance. In order to keep making smaller electronics, manufacturers need smaller integrated circuits. One method to reduce circuit size is to stack circuits vertically and solder the interface to connect them electrically. The problem to date with this process is that the welding requires high temperatures or a mixing of metals that can damage circuit performance.

Ten Eyck and fellow graduate students have created a nano-welding process that welds at a reduced temperature. This advance will allow manufactures to use highly efficient, pure metals (like copper) rather than metals that have a lower melting point (like lead) and negative environmental impacts.

Ten Eyck plans to pursue a career with a government or private industry laboratory, helping to create the next wave of sustainable technologies and innovative electronics.


About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nationís oldest technological university. The university offers bachelorís, masterís, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Gabrielle DeMarco
Rensselaer Polytechnic Institute
Office of Strategic Communications and External Relations
518.276.6542 (office)
518.495.5488 (cell)

Copyright ©

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Coming to a monitor near you: A defect-free, molecule-thick film November 29th, 2015

Overtaking science fiction with physics: 33-year-old physicist at the University of Kaiserslautern receives 1.5 million euros of EU funding November 29th, 2015

'Material universe' yields surprising new particle November 28th, 2015

New 'self-healing' gel makes electronics more flexible November 25th, 2015


National Space Society Congratulates Blue Origin on First Return to Launch Site of New Shepard November 30th, 2015

Researchers find new phase of carbon, make diamond at room temperature November 30th, 2015

Researchers from Deakin and Drexel develop super-absorbent material to soak up oil spills November 30th, 2015

New study reveals what's behind a tarantula's blue hue: Researchers uncover nanostructures in exoskeleton of blue-haired tarantulas November 30th, 2015


Researchers from Deakin and Drexel develop super-absorbent material to soak up oil spills November 30th, 2015

Iranian Scientists Discover New Catalyst to Remove Pharmaceutical Compounds from Wastewater November 28th, 2015

Researchers find new, inexpensive way to clean water from oil sands production November 24th, 2015

UCLA nanoscientists develop safer, faster way to remove pollutants from water November 23rd, 2015


Coming to a monitor near you: A defect-free, molecule-thick film November 29th, 2015

Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

Tandem solar cells are simply better: Higher efficiency thanks to perovskite magic crystal November 24th, 2015

ORNL microscopy captures real-time view of evolving fuel cell catalysts November 21st, 2015

Fuel Cells

ORNL microscopy captures real-time view of evolving fuel cell catalysts November 21st, 2015

Application of Nanocomposite Membranes in Fuel Cells to Produce Green Energy November 18th, 2015

Rice news release: Cobalt atoms on graphene a powerful combo: Rice University catalyst holds promise for clean, inexpensive hydrogen production October 22nd, 2015

Unveiling distribution of defects in proton conductors: A new strategy to open a practical use of IT-SOFCs October 21st, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic