Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Commencement 2007: Engineering a Sustainable Future

Abstract:
As an Eagle Scout, it is no surprise that Gregory Ten Eyck would be an innovator with a deep respect for the environment. But he has taken these values to a whole new level, developing inventions that could lead to better fuel cells, reduce the impacts of carbon dioxide, and create the next generation of super-efficient microelectronics.

Commencement 2007: Engineering a Sustainable Future

Troy, NY | Posted on May 1st, 2007

Ten Eyck will receive a Ph.D. in electrical engineering at Rensselaer Polytechnic Institute's 201st Commencement on May 19.

The son of an Air Force officer, Ten Eyck spent his early childhood moving around the country. His family eventually settled in Maryland, where he went through junior and senior high school.

It seems that Ten Eyck was born to be an electrical engineer. His family, including an older brother and two older step-sisters, always looked to him to fix everything from the VCR to the microwave. He recalls being the family's go-to guy on anything electronic, and he still gets late-night calls for computer tech support.

He earned his bachelor's in electrical engineering from Virginia Tech, and then co-founded a company that built photonic and micromachined components. The company would grow to include more than 225 employees. After this experience, Ten Eyck decided to pursue his Ph.D. and was accepted to Rensselaer in 2003.

While at Rensselaer, Ten Eyck became a Graduate Assistant in Areas of National Need (GAANN) fellow. This prestigious fellowship through the U.S. Department of Education has paid for his entire graduate education and given him the freedom to pursue his own research. He also was a fellow in Rensselaer's Integrative Graduate Education and Research Traineeship (IGERT) program in terahertz research, which is funded by the National Science Foundation. Both programs are managed by Gwo-Ching Wang, professor and chair of physics, applied physics, and astronomy. Ten Eyck worked closely with Wang during his time at Rensselaer, along with his primary research advisor Toh-Ming Lu, the R.P. Baker Distinguished Professor of Physics.

Ten Eyck's research focuses on the deposition of extremely thin metal films. He has invented three methods that could have broad implications for the next generation of microelectronics, as well as applications in energy and the environment. His innovations made him a finalist for Rensselaer's first-ever Lemelson-Rensselaer Student Prize and have earned him the respect of researchers in his field and in industry.

First, Ten Eyck developed a method to deposit metals on polymers. This application of atomic layer deposition (ALD) has been envisioned by scientists for years as a way to improve circuit function and reduce circuit size, but it has never been accomplished. Ten Eyck's ALD process could enable industry to create devices that were thought to be years in the future.

Using his expertise in metal ALD, Ten Eyck also learned to create large metal surfaces with thin, uniform layers of metal over a porous insulating material to create a highly efficient energy storing surface. He then took this invention a big step further, creating a surface that could combine carbon dioxide with hydrogen to form methane gas at room temperature.

Such a conversion normally requires temperatures upward of 300 degrees Celsius. This key breakthrough has the potential to transform greenhouse gases into useful natural gas. The process could allow for the production of new energy storage devices and conversion technologies such as fuel cells.

Finally, Ten Eyck has envisioned a novel way of connecting circuits that greatly reduces the size of the circuit and can improve device performance. In order to keep making smaller electronics, manufacturers need smaller integrated circuits. One method to reduce circuit size is to stack circuits vertically and solder the interface to connect them electrically. The problem to date with this process is that the welding requires high temperatures or a mixing of metals that can damage circuit performance.

Ten Eyck and fellow graduate students have created a nano-welding process that welds at a reduced temperature. This advance will allow manufactures to use highly efficient, pure metals (like copper) rather than metals that have a lower melting point (like lead) and negative environmental impacts.

Ten Eyck plans to pursue a career with a government or private industry laboratory, helping to create the next wave of sustainable technologies and innovative electronics.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Contacts:
Gabrielle DeMarco
Rensselaer Polytechnic Institute
Office of Strategic Communications and External Relations
518.276.6542 (office)
518.495.5488 (cell)

Copyright © http://news.rpi.edu

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project