Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Commencement 2007: Engineering a Sustainable Future

Abstract:
As an Eagle Scout, it is no surprise that Gregory Ten Eyck would be an innovator with a deep respect for the environment. But he has taken these values to a whole new level, developing inventions that could lead to better fuel cells, reduce the impacts of carbon dioxide, and create the next generation of super-efficient microelectronics.

Commencement 2007: Engineering a Sustainable Future

Troy, NY | Posted on May 1st, 2007

Ten Eyck will receive a Ph.D. in electrical engineering at Rensselaer Polytechnic Institute's 201st Commencement on May 19.

The son of an Air Force officer, Ten Eyck spent his early childhood moving around the country. His family eventually settled in Maryland, where he went through junior and senior high school.

It seems that Ten Eyck was born to be an electrical engineer. His family, including an older brother and two older step-sisters, always looked to him to fix everything from the VCR to the microwave. He recalls being the family's go-to guy on anything electronic, and he still gets late-night calls for computer tech support.

He earned his bachelor's in electrical engineering from Virginia Tech, and then co-founded a company that built photonic and micromachined components. The company would grow to include more than 225 employees. After this experience, Ten Eyck decided to pursue his Ph.D. and was accepted to Rensselaer in 2003.

While at Rensselaer, Ten Eyck became a Graduate Assistant in Areas of National Need (GAANN) fellow. This prestigious fellowship through the U.S. Department of Education has paid for his entire graduate education and given him the freedom to pursue his own research. He also was a fellow in Rensselaer's Integrative Graduate Education and Research Traineeship (IGERT) program in terahertz research, which is funded by the National Science Foundation. Both programs are managed by Gwo-Ching Wang, professor and chair of physics, applied physics, and astronomy. Ten Eyck worked closely with Wang during his time at Rensselaer, along with his primary research advisor Toh-Ming Lu, the R.P. Baker Distinguished Professor of Physics.

Ten Eyck's research focuses on the deposition of extremely thin metal films. He has invented three methods that could have broad implications for the next generation of microelectronics, as well as applications in energy and the environment. His innovations made him a finalist for Rensselaer's first-ever Lemelson-Rensselaer Student Prize and have earned him the respect of researchers in his field and in industry.

First, Ten Eyck developed a method to deposit metals on polymers. This application of atomic layer deposition (ALD) has been envisioned by scientists for years as a way to improve circuit function and reduce circuit size, but it has never been accomplished. Ten Eyck's ALD process could enable industry to create devices that were thought to be years in the future.

Using his expertise in metal ALD, Ten Eyck also learned to create large metal surfaces with thin, uniform layers of metal over a porous insulating material to create a highly efficient energy storing surface. He then took this invention a big step further, creating a surface that could combine carbon dioxide with hydrogen to form methane gas at room temperature.

Such a conversion normally requires temperatures upward of 300 degrees Celsius. This key breakthrough has the potential to transform greenhouse gases into useful natural gas. The process could allow for the production of new energy storage devices and conversion technologies such as fuel cells.

Finally, Ten Eyck has envisioned a novel way of connecting circuits that greatly reduces the size of the circuit and can improve device performance. In order to keep making smaller electronics, manufacturers need smaller integrated circuits. One method to reduce circuit size is to stack circuits vertically and solder the interface to connect them electrically. The problem to date with this process is that the welding requires high temperatures or a mixing of metals that can damage circuit performance.

Ten Eyck and fellow graduate students have created a nano-welding process that welds at a reduced temperature. This advance will allow manufactures to use highly efficient, pure metals (like copper) rather than metals that have a lower melting point (like lead) and negative environmental impacts.

Ten Eyck plans to pursue a career with a government or private industry laboratory, helping to create the next wave of sustainable technologies and innovative electronics.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nationís oldest technological university. The university offers bachelorís, masterís, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Contacts:
Gabrielle DeMarco
Rensselaer Polytechnic Institute
Office of Strategic Communications and External Relations
518.276.6542 (office)
518.495.5488 (cell)

Copyright © http://news.rpi.edu

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Announcements

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Environment

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Fuel Cells

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Proton pinball on the catalyst: Moisture helps catalyst in fuel cells August 3rd, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic