Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > From nano to macro - moldable metals shape things from the bottom up

April 24th, 2007

From nano to macro - moldable metals shape things from the bottom up

Abstract:
The promise of revolutionary bottom-up nanotechnology is based on a vision of molecular assembly technologies where nanoscale materials and structures self-assemble to microscale structures and finally to macroscopic devices and products. We are a long way from realizing this vision but researchers are busily laying the foundation for the things to come. Assembling nanoscopic components into macroscopic materials has been an appealing goal but one of the enormous difficulties lies in bridging approximately six orders of magnitude that separate the nanoscale from the macroscopic world. New research at Northwestern University in the U.S. helps to overcomes this difficulty by dividing the assembly process into two manageable sub-steps. First, nanoparticles are assembled into larger, 100 nm-size, spherical building blocks, which are both deformable and "sticky" towards one another. Once assembled, these components "glue" together like pieces of clay to give millimeter or even centimeter-sized structures. The novelty of this technique is both the hierarchical assembly approach (i.e., atoms to nanoparticles to supraspheres to macroscopic materials) and the resulting "soft" structures, which contrast with previously reported hard and brittle nanoparticles assemblies/crystals. This research takes a further step in making nanoscale discoveries relevant to our everyday - macroscopic - world.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Nanotechnology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Feynman Prize Winners Announced! April 26th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Self Assembly

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Materials/Metamaterials

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project