Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Create Nano Nose With Aim of Sniffing Out Sickly Cells

Abstract:
A team of scientists have created a kind of molecular nose that uses nanoparticle-based sensors to sniff out and identify proteins. The sensors can be trained to detect a wide variety of proteins and could eventually serve as a tool for diagnosing diseases like cancer by sniffing out the proteins made by sickly cells.

Scientists Create Nano Nose With Aim of Sniffing Out Sickly Cells

Amherst, MA | Posted on April 22nd, 2007

A team of scientists from the University of Massachusetts Amherst have created a kind of molecular nose that uses nanoparticle-based sensors to sniff out and identify proteins. The sensors, which can be trained to detect a wide variety of proteins, could eventually serve as a tool for diagnosing diseases like cancer by sniffing out the proteins made by sickly cells.

The research appears in the May issue of the journal Nature Nanotechnology, with advance online publication on April 22. Led by UMass Amherst chemist Vincent Rotello and Uwe Bunz of the Georgia Institute of Technology, several scientists collaborated on the work.

Current methods for detecting proteins usually rely on specific receptors that bind like a lock and key with their specific protein. Researchers fill a tray with these molecular "locks" and see what sticks when they add protein "keys" to the tray. While precise, the technique is costly and in order to detect a particular protein key, you have to have its particular lock.

Rotello's team wanted to design a detection method that operated more holistically, like the human nose, which uses a combination of receptors to interpret and identify smells. A protein that was exposed to this molecular nose would stimulate a group of sensing receptors in a signature pattern that could be read like a fingerprint. Unknown or new proteins would have a unique signature as well and could be identified with much less effort than standard techniques.

So the scientists set out to build their molecular nose using gold nanoparticles, materials that can be precisely manipulated into a variety of shapes and sizes. They also added a florescent dye to their sensors, so they could see which ones were interacting with a particular protein. All proteins have a unique shape—one might have sections with an electrical charge, for example, or particular kind of chemical bond. Depending on its shape, the protein will stimulate certain sensors to release their dye and glow. The researchers can then read the pattern of glowing like a fingerprint and identify the protein that's present.

Rotello's team used six different kinds of nanoparticles to sense for seven different proteins, some of which were intentionally very similar. Ninety-four percent of the time the sensors correctly identified the given protein. The scientists also worked out a technique for dealing with varying protein concentrations, which can sometimes confuse analyses. And by combining their raw data with statistical analyses, the researchers were able to correctly identify 56 randomly selected proteins with 96 percent accuracy.

The chemical nose approach provides a distinct method of sensing that has the potential to be more reliable (fewer false negatives and false positives) and cheaper than current technology, says Rotello. And while the research team is focusing on sensors for detecting the malformed proteins produced by cancer cells, the technique holds promise as a means for detecting a wide variety of diseases.

"The goal is to make a sensor that works like the cancer-sniffing dogs we have been hearing about in the news," says Rotello.

####

About University of Massachusetts Amherst
UMass Amherst, the flagship campus of the University of Massachusetts system, sits on nearly 1,450-acres in the scenic Pioneer Valley of Western Massachusetts, 90 miles from Boston and 175 miles from New York City. The campus provides a rich cultural environment in a rural setting close to major urban centers.

For more information, please click here

Contacts:
Vince Rotello
413/545-2058

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project