Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Improved Self-Assembly of Nanomaterials May Enhance Solar Cells

Chemist David Watson has received a CAREER Award to advance his photochemistry research.
Chemist David Watson has received a CAREER Award to advance his photochemistry research.

Abstract:
Educational part of grant boosts science for Buffalo's Native American students

Improved Self-Assembly of Nanomaterials May Enhance Solar Cells

Buffalo, NY | Posted on April 19th, 2007

Novel, self-assembly techniques for fabricating inorganic nanomaterials that could pave the way for more efficient and powerful solar cells, chemical sensors and detectors currently are being developed by a University at Buffalo chemist.

David F. Watson, Ph.D., an assistant professor in the Department of Chemistry in the University at Buffalo's College of Arts and Sciences, has been awarded a prestigious National Science Foundation CAREER Award to conduct the research.

According to the NSF, the CAREER program recognizes and supports the early career-development activities of teacher-scholars "who are most likely to become the academic leaders of the 21st century."

The research component of the grant involves a new approach to photochemistry, chemical reactions involving light, while the educational component will introduce students in the Buffalo Public Schools from underrepresented groups, including Native Americans, to principles of materials chemistry and scientific research through hands-on science activities.

The grant, which provides $576,100 over five years, will allow Watson and colleagues to conduct research aimed at better controlling the electron transfer reactivity of self-assembled inorganic nanomaterials.

In particular, Watson's group is studying and characterizing photo-induced surface electron transfer reactions occurring within self-assembled inorganic nanomaterials, the reactions that drive solar cells and photocatalysts. The scientists will continue work on a self-assembly technique Watson developed for attaching quantum dots, tiny light-absorbing particles, to metal oxide films.

Using time-resolved spectroscopy, the researchers are able to probe systematically how composition, morphology and physical properties of the materials affect the kinetics and efficiency of electron transfer processes.

The researchers also will study how to improve the targeted patterning of nanoparticles onto metal oxide surfaces.

"This photochemical patterning strategy addresses one of the significant challenges in nanofabrication, to control both short-range and long-range order in nanostructured materials," said Watson.

Short-range order refers to the organization of molecules and materials on the nanometer scale, while long-range order involves pattern formation on larger, even macroscopic, dimensions.

Watson's approach combines the "top-down" and "bottom-up" methods of fabricating nanomaterials into a hybrid technique, in which photochemical reactions are used to organize nanoparticles on surfaces.

Substrates with high surface areas, he explained, allow for optically dense patterns and more efficient light harvesting, thereby potentially increasing the efficiency of solar cells and other devices.

"Because our surface substrate is the photochemically active component, our approach also might enable more widely applicable patterning techiques," he said.

Watson's grant also will provide summer research internships to students at various high schools in Buffalo through collaborations with faculty in the departments of chemistry and physics in the UB College of Arts and Sciences and in the departments of chemical and biological engineering and electrical engineering in the UB School of Engineering and Applied Sciences.

The educational program builds on the extensive partnership that exists between UB's Department of Chemistry and Buffalo Public School 19, a Native American magnet school for middle school students.

Also with the support of the CAREER award, Watson is designing a "writing-intensive" course for advanced undergraduates and graduate students in the Department of Chemistry that will address one of his key educational concerns.

"Chemistry majors typically don't do a lot of writing during their undergraduate or graduate careers, but it's a huge part of what we do as scientists," he said. "The idea is to get the students used to doing a lot of writing and to write mock reviews and critique each others' work."

Watson lives in Williamsville.

####

About University of Buffalo
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

For more information, please click here

Contacts:
Ellen Goldbaum



716-645-5000 ext 1415

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Smarter window materials can control light and energy July 22nd, 2015

Solar/Photovoltaic

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Perovskite solar technology shows quick energy returns: New technology beats current solar panel technology in life-cycle energy assessment July 20th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project