Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanostellar Introduces Gold in Oxidation Catalyst That Can Reduce Diesel Hydrocarbon Emissions by as Much as 40 Percent More Than Commercial Catalysts

Abstract:
Boost in catalyst technology aims to slash emissions in light- and heavy-duty diesel engines and other lean-stream applications

Nanostellar Introduces Gold in Oxidation Catalyst That Can Reduce Diesel Hydrocarbon Emissions by as Much as 40 Percent More Than Commercial Catalysts

DETROIT, MI | Posted on April 16th, 2007

Nanostellar, Inc., a leader in nano-engineered catalyst materials, today announced a first in diesel emissions technology: the introduction of gold as an oxidation catalyst. Nanostellar's NS Gold catalyst enables manufacturers of light- and heavy-duty diesel engines to reduce noxious emissions by as much as 40 percent more than existing pure-platinum catalysts at equal cost. Nanostellar introduced its first-generation product, based on a platinum and palladium alloy, in mid-2006, and it achieved 25%-30% higher performance than commercial pure-platinum catalysts. NS Gold, Nanostellar's second-generation product, delivers a further 15%-20% performance increase.

Platinum is the most expensive component of the diesel oxidation catalysts (DOCs) that are required to meet the new, stringent emission regulations for the 14 million light-duty and 2 million heavy-duty diesel vehicles produced annually worldwide. In recent years, Nanostellar and other producers of catalyst materials have introduced the use of palladium to partially replace the four-times more expensive platinum. Now, to further reduce the amount of platinum needed and the overall cost of the catalysts, Nanostellar has pioneered the use of gold - which is currently about half the price of platinum - for diesel emission control.

Independent testing of Nanostellar's NS Gold, in comparison with today's pure-platinum catalysts, has shown that NS Gold increases hydrocarbon oxidation activity by as much as 40 percent at equal precious-metal cost. When compared to emerging platinum-palladium catalysts, NS Gold promises to increase hydrocarbon oxidation activity by 15-20 percent at equal precious-metal cost. A tri-metal formulation of gold, platinum, and palladium, NS Gold allows the proportions of each metal to be adjusted to help catalyst systems engineers meet engine-specific performance targets and stabilize the overall cost of diesel catalysts, despite fluctuations in the price of precious metals.

"Not only does NS Gold break performance barriers imposed by mixed platinum and palladium catalysts, but also its performance can be more easily tuned to the characteristics of a variety of diesel engines," said Pankaj Dhingra, CEO of Nanostellar. "We are excited to offer NS Gold to improve the cost equation for the diesel industry. Gold is not new to catalyst scientists, but this is the first time it has been successfully adapted for use in automotive diesel oxidation catalysts."

According to Dhingra, the continued evolution and maturity of Nanostellar's Rational Catalyst Design methodology brought NS Gold into existence in record time. "Rational Design combines computational approaches with targeted experiments to accelerate the development of new materials," he explained "Nanostellar has over 50 man-years of Rational Catalyst Design experience and a substantial database of catalyst-specific knowledge, developed from both computational and experimental approaches. We have unique algorithms and software that address computational catalyst design, along with proprietary synthesis technologies and novel testing methods that provide a detailed understanding of catalytic processes."

NS Gold is potentially suitable for treating all lean-stream exhaust, where air is in excess of fuel-borne hydrocarbon gases. Applications include, but are not limited to, treating particulates and hydrocarbons in soot filters, stationary-source volatile organic compound (VOC) emissions, and ammonia slip in selective catalytic reduction (SCR) systems.

NS Gold is immediately available for targeted application-specific testing. Production quantities will be available as production programs are identified and released.

####

About Nanostellar, Inc.
Nanostellar, Inc. provides diesel automotive and stationary power industries with nano-engineered catalyst materials that reduce exhaust emissions and increase the effectiveness of precious metals in catalysts. Focusing in the fields of quantum computational nanoscience, chemistry, materials science, and chemical engineering, Nanostellar utilizes Rational Catalyst Design, which combines computational approaches with targeted experiments, to accelerate the development of new materials. Headquartered in Redwood City, California, Nanostellar is funded by premier investors including 3i, Khosla Ventures, Monitor Ventures, Firelake Capital Management LLC, and AsiaTech Management.

Nanostellar is a registered trademark and NS Gold is a trademark of Nanostellar, Inc. All other brands, products, or service names are or may be trademarks or service marks of their respective owners.

For more information, please click here

Contacts:
Eileen Leveckis
Trainer Communications
(415) 819-4232

Copyright © Nanostellar, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Environment

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Automotive/Transportation

Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging February 13th, 2018

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

New research yields super-strong aluminum alloy January 25th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project