Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Smart thin film membranes adopt properties of guest molecules

Abstract:
Virginia Tech researchers announced last year that they had created a nanostructured membrane that incorporates DNA base pairs in order to impart molecular recognition and binding ability to the synthetic material. This year they will show for the first time that these new films, membranes, and elastomers are compatible with diverse organic and inorganic molecules and will adopt properties of the guest molecules.

Smart thin film membranes adopt properties of guest molecules

BLACKSBURG, VA | Posted on March 28th, 2007

The research is being presented as an invited talk at the 233rd national meeting of the American Chemical Society in Chicago March 25-29.

Chemistry professor Tim Long's research group, students affiliated with the Macromolecule and Interfaces Institute (MII) at Virginia Tech, and the U.S. Army Research Laboratory created a block copolymer, where different monomers are linked in a sequential manner and form a nanostructured film. They used adenine and thymine nucleotides, two of the four DNA base pairs that recognize each other. Then the researchers experimented with different kinds of guest molecules with complementary hydrogen bonding sites (hydrogen has a low energy attraction to many types of atoms).

The low energy attraction, means the guest molecules are widely dispersed throughout the membrane, which then takes on the properties of the guest molecules. "For example," said Long, "if the guest molecules have ionic sites (sites with positive and negative charges), you will be able to transfer water through a film because you would have ion channels at the nanoscale. It's similar to the way a cell membrane works to control the flow of specific ions into a cell. You can create protective clothing - against chemicals - that would still allow water vapor through."

Salts, as ordinary table salt, are hydrophilic (water loving) and their introduction into a block copolymer template permits the placement of the salts at the nanometer dimension. One can imagine forming of channels of salts that are not visible with the human eye, but act as a roadway for the transport of water molecules.

"The research is synergy at the nanotechnology-biotechnology interface," Long said.


The talk, "Nucleobase-containing triblock copolymers as templates for the dispersion of guest molecules at the nanoscale" (PMSE 423) will be presented at 9:05 a.m. Wednesday, March 28, in McCormick Place South room S505A. Authors are Brian Mather of Albuquerque, a chemical engineering doctoral student in MII; Margaux B. Baker, an undergraduate student from the University of Michigan who studied with Long's group during summer 2006; Long, and Frederick L. Beyer of the U.S. Army Research Laboratory.

Mather received his undergraduate degree from the University of New Mexico. Learn more about his research at Virginia Tech by visiting http://www.chem.vt.edu/chem-dept/tlong/Brian.html .

####

For more information, please click here

Contacts:
Susan Trulove

540-231-5646

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Announcements

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Events/Classes

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

FRITSCH Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 Stand 227 August 9th, 2017

Thermo Fisher Scientific Showcases Innovations in Electron Microscopy and Spectroscopy at M&M 2017: New analytical technologies improve workflows for life sciences and materials science researchers August 8th, 2017

Nanometrics Announces Upcoming Investor Events August 3rd, 2017

Nanobiotechnology

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project