Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanocrystal research could lead to new vaccine and computer inks

Abstract:
Maren Roman, assistant professor in the wood science and forest products department of the College of Natural Resources at Virginia Tech, is taking nanocrystal research to a new level that may lead to a new generation of vaccines and better computer printer ink.

Nanocrystal research could lead to new vaccine and computer inks

BLACKSBURG, VA | Posted on March 28th, 2007

Roman delivered her findings at the American Chemical Society 233rd National Meeting and Exposition in Chicago, held March 25-29. The focus of her research deals with cellulose drug delivery and ink jet printing.

Roman experimented with taking cellulose nanocrystals and attaching antibodies to the surface of the crystals. This design enables the nanocrystals to block cell receptors in the body. The process may eventually be used to create vaccines. Through the same receptor-blocking method, this process can combat the effects of some diseases involving inflammation of blood vessels, including diabetes, rheumatoid arthritis, and certain cancers.

The poster, "Cellulose nanocrystals as targeted drug delivery systems" (Cell 82), was presented on Sunday, March 25, as part of the Cell general posters session, and on Sunday, March 26, 8 to 10 p.m., as part of the Sci-Mix session. Authors of the poster are Roman, Shuping Dong, a Ph.D. candidate in wood science and forest products and part of the Macromolecular Science and Engineering graduate degree program at Virginia Tech; graduate student Anjali A. Hiran and Assistant Professor of Cellular and Molecular Biology Yong Woo Lee, both with the Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences.

Ink jet printing was another research project for Roman. She experimented with using ink jet printers to deposit the crystals because the printers' main focus is precision. Nanocrystals are tiny and pose many difficulties to the people using them. A typical remedy involves converting the nanocrystals to a powder. This has risks as well, as the powder can be a serious health hazard if inhaled. The ink jet printing allows for a safe method of deposition of the nanocrystals.

Roman delivered the talk, "Ink-jet printing of cellulose nanocrystal suspensions" (Cell 98) on Monday, March 26, at the McCormick Place Lakeside. The paper is authored by Fernando Navarro, a graduate student in the Macromolecular Science and Engineering Program at Virginia Tech, and Roman.

####

About Virginia Tech
The College of Natural Resources at Virginia Tech consistently ranks among the top five programs of its kind in the nation. Faculty members stress both the technical and human elements of natural resources and instill in students a sense of stewardship and land-use ethics. Areas of studies include environmental resource management, fisheries and wildlife sciences, forestry, geospatial and environmental analysis, natural resource recreation, urban forestry, wood science and forest products, geography, and international development.

For more information, please click here

Contacts:
Lynn Davis
(540) 231-6157

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Announcements

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Events/Classes

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Arrowhead Pharmaceuticals to Host R&D Day on RNAi-Based Therapies September 1st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project