Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Absorbing Molecules Produce 65-Nanometer Patterns

Abstract:
Producing three-dimensional polymer line structures as small as 65 nanometers wide just became easier with new two-photon absorbing molecules that are sensitive to laser light at short wavelengths, allowing researchers to create them without highly sophisticated fabrication methods.

New Absorbing Molecules Produce 65-Nanometer Patterns

Atlanta, GA | Posted on March 27th, 2007

Producing three-dimensional polymer line structures as small as 65 nanometers wide just became easier with new two-photon absorbing molecules that are sensitive to laser light at short wavelengths, allowing researchers to create them without highly sophisticated fabrication methods.

Fabricating such small features normally requires expensive electron beam or extreme ultraviolet lithography equipment. However, using a technique called 3D multi-photon lithography simplifies the process and reduces the cost. The technique could compete with existing processes for fabricating nanoscale electronic, photonic and microfluidic devices.

"Being able to obtain line widths down to 65 nanometers, which is substantially below prior published work of 100 nanometers, opens up new applications for multi-photon lithography," said Joseph Perry, a professor in the Georgia Tech School of Chemistry and Biochemistry and the Center for Organic Photonics and Electronics.

The technique scans a laser beam across a substrate coated with a polymer resin containing a unique dye to create a desired hardened polymer structure. The laser writing process takes advantage of the fact that the chemical reaction of cross-linking occurs only where molecules have absorbed two photons of light. Since the rate of two-photon absorption drops off rapidly with distance from the laser's focal point, only molecules at the focal point receive enough light to absorb two photons.

The fabrication method and dye were described in the March 19 issue of Optics Express. The research was supported by the Office of Naval Research APEX Consortium and the National Science Foundation, through the Science and Technology Center for Materials and Devices for Information Technology Research.

Seth Marder and Stephen Barlow, also researchers in the School of Chemistry and Biochemistry and the Center for Organic Photonics and Electronics, synthesized the unique molecule called DAPB, 4,4'-bis(di-n-butylamino)biphenyl, to initiate the chemical reaction leading to the hardening of the polymers when exposed to laser light.

"We needed a dye with good two-photon absorption at a wavelength of 520 nanometers, so we tried DAPB," explained Perry. "DAPB proved to be very effective in this kind of lithography."

The molecule developed by Marder and Barlow is about ten times more efficient at absorbing light by two photon absorption than commercial ultraviolet photoactive materials. That efficiency allowed Perry and graduate students Wojciech Haske and Vincent Chen, research scientist Joel Hales and postdoctoral associate Wenting Dong to create 3D patterns with nanoscale lines at light intensities low enough to avoid damaging the polymers.

For the experiments, a film of the polymer resin containing DAPB was formed. When the film was exposed to the focused laser, DAPB was excited and triggered cross-linking, leaving the insoluble scanned structure on the surface of a substrate when placed in a developer solution.

Since Perry controls where the Ti: Sapphire pulsed laser scans with a computer program, the polymers can be cross-linked in any pattern including 3D stacks of straight lines that are connected and sturdy. The laser beam is turned on to expose lines of polymer and off when no line should be drawn.

Conventional lithography involves creating a specific pattern on a mask for each new layer and exposing each layer to light and developing it. With this new technique, three-dimensional layered nanostructures can be created simply by having a computer program scan a different pattern for each layer. Mask templates become unnecessary and the coating, exposing and developing processes only have to be conducted once.

"We can create essentially any pattern we want. For this work, some of the patterns look like walls or lines suspended across walls and some are like a tall stack of crisscrossed lines," noted Perry.

Perry and Marder co-founded a company in 2003 called Focal Point Microsystems that is working to commercialize this fabrication technology.

"We can write very small lines and create stacked-up grids of lines called photonic crystals," explained Perry. "This work shows that we can fabricate functional photonic micro-devices with tailored transmission capabilities."

It takes only 10 minutes to create a 20 micron by 20 micron structure with 30 layers, Perry added. Perry envisions using this technology to create compact micro-spectrometers on a chip for use in telecommunications and sensors. It may also be used as a compact way to separate the multiple wavelengths traveling through a fiber optic cable.

This type of simple, table-top technology may also be useful to fabricate customized types of circuits with many layers, which would be extremely expensive with standard methods because each layer would require a special mask.

"With the combination of the right molecule and short wavelength light, we've demonstrated that we can obtain nanoscale features. We're at 65 nanometers now and we're still trying to go smaller," said Perry.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology.

Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 16,000 undergraduate and graduate students receive a focused, technologically based education.

Accredited by the Southern Association of Colleges and Schools (SACS), the Institute offers many nationally recognized, top-ranked programs. Undergraduate and graduate degrees are offered in the Colleges of Architecture, Engineering, Sciences, Computing, Management, and the Ivan Allen College of Liberal Arts. Georgia Tech consistently ranks among U.S. News & World Report's top ten public universities in the United States. In a world that increasingly turns to technology for solutions, Georgia Tech is using innovative teaching and advanced research to define the technological university of the 21st century.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Media Relations Contact:
John Toon
(404-894-6986)
E-mail: ( ).

Joe Perry
(404-385-6046)
E-mail: ( ).

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Photonics/Optics/Lasers

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE