Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Physicists Tailor Magnetic Pairings In Nanoscale Semiconductors

March 14th, 2007

Physicists Tailor Magnetic Pairings In Nanoscale Semiconductors

Abstract:
Electrons love to zip around metals such as copper, especially if the metal is cooled to temperatures near absolute zero. But if they encounter a magnetic atom (say, iron) during their travels, the electrons will try to "screen," or cancel out, the magnetic atom's spin alignment by pairing with it. This pairing modifies the flow of electrons in the metal, in a phenomenon called the Kondo effect.

But what if there weren't just one set of mobile electrons zipping around the metal? What if there were two, and both sets fought equally hard to couple with the magnetic impurity atom? Torn between two lovers, the magnetic atom couldn't decide with which set to partner. The competition would go unresolved, and the atom would join neither, instead existing in a remarkable state of frustrated independence known as the two-channel Kondo state.

Source:
testandmeasurement.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

New TriboLab CMP Provides Cost-Effective Characterization of Chemical Mechanical Wafer Polishing Processes: Bruker Updates Industry-Standard CP-4 Platform for Most Flexible and Reliable Testing June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Discoveries

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project