Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Physicists Tailor Magnetic Pairings In Nanoscale Semiconductors

March 14th, 2007

Physicists Tailor Magnetic Pairings In Nanoscale Semiconductors

Abstract:
Electrons love to zip around metals such as copper, especially if the metal is cooled to temperatures near absolute zero. But if they encounter a magnetic atom (say, iron) during their travels, the electrons will try to "screen," or cancel out, the magnetic atom's spin alignment by pairing with it. This pairing modifies the flow of electrons in the metal, in a phenomenon called the Kondo effect.

But what if there weren't just one set of mobile electrons zipping around the metal? What if there were two, and both sets fought equally hard to couple with the magnetic impurity atom? Torn between two lovers, the magnetic atom couldn't decide with which set to partner. The competition would go unresolved, and the atom would join neither, instead existing in a remarkable state of frustrated independence known as the two-channel Kondo state.

Source:
testandmeasurement.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project