Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIH funds next generation of DNA sequencing projects at ASU

Abstract:
DNA testing is transforming health care and medicine, but current technologies only give a snapshot of an individual's genetic makeup. Any patient wanting a complete picture of their inherited DNA, or genome, would drop their jaw at the sight of the bill - to the current tune of $10 million or more charged for every human or mammalian-sized genome sequenced.

NIH funds next generation of DNA sequencing projects at ASU

Tempe, AZ | Posted on February 5th, 2007

Now, with a grant award from the National Human Genome Research Institute (NHGRI), scientists at the Biodesign Institute at Arizona State University are expanding efforts to dramatically lower the cost of DNA sequencing.

The NHGRI, part of the National Institutes of Health (NIH), has set an ambitious target of $1,000 or less - a cost 10,000 times lower than current technology - to make genome sequencing a routine diagnostic tool in medical care. The reduced cost may allow doctors to tailor medical treatments to an individual's genetic profile for diagnosing, treating, and ultimately preventing many common diseases such as cancer, heart disease, diabetes and obesity.

ASU chemist Peiming Zhang and his collaborator Jian Gu have been awarded a $897,000 grant under this program for an ambitious DNA sequencing project that combines physics, chemistry and nanotechnology with engineering. The researchers have been charged with the daunting task of shrinking down the 13 year, $2.7 billion Human Genome Project to days.

"If you want to develop a technology to sequence an individual genome for $1,000, you have to think about using nanotechnology," said Zhang, associate research professor in the Center for Single Molecule Biophysics at the Biodesign Institute. "The technology is available now to pioneer a new approach to sequencing."

Much like the computer industry, DNA sequencing technology is driven by the mantra of faster, cheaper and more reliable. In the past generation, sequencing costs have fallen 100-fold, from roughly a dollar a DNA base to a penny, but are still far out of reach for the public.

Zhang's technological vision would enable scientists to sequence billions of base pairs of DNA in a single day. This is the size of an average mammalian genome and is approximately 10,000 times more bases per day than can be sequenced using current technologies. By increasing the speed of sequencing and reducing its cost, genetic research may develop a more significant role in everyday medical practice.

In Zhang's sequencing project, billions of base pairs of genomic DNA could be sequenced on a single, cookie crumb-sized one centimeter by one centimeter chip. The technique uses hybridization, a process of joining two complementary strands of DNA, to sequence DNA by applying a sample to single stranded DNA probes attached to a chip.

An atomic force microscope (AFM), like a caffeinated speed reader, can then rapidly scan the surface of the chip to see where DNA from the sample has hybridized to the probes. Wherever sample DNA binds to the probes, the sequence is registered.

"Traditional approaches to sequencing by hybridization are limited by the number of probes that can be placed on a chip," said Jian Gu, a research staff member in the Center for Applied NanoBioscience at the Biodesign Institute and co-leader of the project.

By using nanoprinting techniques developed by Gu, the researchers hope to increase the number probes they can fit on a chip. "Right now, we have a mechanical printing technology that could put down billions of probes on a chip surface at very low cost," said Gu.

It is estimated that a single base pair can be sequenced for every DNA probe, which means that optimizing the nanoprinting process is critical to the goal of a $1,000 genome, according to Zhang.

The researchers' first goal is a proof of principal for their approach. They plan to synthesize a universal DNA nanoarray on a 100 micrometer by 100 micrometer chip, about the size of a dust mite, by 2009.

The award to Zhang and his team was one of nine grants given by the NIH to achieve the $1,000 genome goal. Zhang's effort also joins two other ASU research teams, led by Stuart Lindsay and Peter Williams, who have more than $2 million in other DNA sequencing projects funded at ASU.

"There are currently only 36 grants in the entire NHGRI sequencing program, so it's quite remarkable that ASU has three of them, which is almost 10 percent of the program," Williams said.

Williams, professor of chemistry and biochemistry, is working on a $100,000 genome project, part of the five-year goal of the NHGRI to drop the current price to a hundredth of the cost. His goal is to selectively sequence genes known to be involved in disease in a matter of hours, and for a few hundred dollars.

Lindsay, who is director of the Biodesign Institute's Center for Single Molecule Biophysics, is engaged in a different separately funded $1,000 genome project. Lindsay is threading DNA through a molecular ring, in this case a sugar called cyclodextrin, that can read the DNA sequence by measuring the differences in friction as the molecule is pulled through the ring.

####

About Biodesign Institute
The Biodesign Institute is focused on preventing and curing disease, overcoming the pain and limitations of injury, renewing and sustaining our environment, and securing a safer world. To accelerate the pace of discovery, the Institute merges formerly distinct fields of research. These include biology, chemistry, physics, medicine, agriculture, environmental science, electronics, materials science, engineering and computing.

Despite its diversity, our research shares a common starting point – exploring the remarkable structure and function of living systems. From microbes to man, these systems have been honed by thousands of years of natural selection. Inspired by nature and powered by collaboration, our bold new approach ensures that discoveries are rapidly translated into real-world benefits.

For more information, please click here

Contacts:
Joe Caspermeyer, Media Relations Manager & Science Editor
(480) 727-0369

Copyright © Arizona Board of Regents

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project