Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rice Chemists Create, Grow Nanotube Seeds

Abstract:
Study Proves Validity of Smalley's SWNT Amplification Concept

Rice Chemists Create, Grow Nanotube Seeds

Houston, TX | Posted on November 17th, 2006

Rice University chemists today revealed the first method for cutting carbon nanotubes into "seeds" and using those seeds to sprout new nanotubes. The findings offer hope that seeded growth may one day produce the large quantities of pure nanotubes needed for dozens of materials applications.

The research is available online and slated to appear in an upcoming issue of the Journal of the American Chemical Society.

Like vintners who hope to grow new vineyards from a handful of grape vine cuttings, Rice's chemists hope their new method of seeded growth for carbon nanotubes will allow them to reproduce their very best samples en masse.

"Carbon nanotubes come in lots of diameters and types, and our goal is to take a pure sample of just one type and duplicate it in large quantities," said corresponding author James Tour, director of Rice's Carbon Nanotechnology Laboratory (CNL). "We've shown that the concept can work."

The study's lead author, CNL founder and nanotube pioneer Richard Smalley, died in October 2005 after a long battle with leukemia. Tour said Smalley devoted an enormous amount of time and energy to the seeded-growth nanotube amplification research in the final two years of his life.

"Rick was intent on using nanotechnology to solve the world's energy problems, and he knew we needed to find a way to make large quantities of pure nanotubes of a particular type in order to re-wire power grids and make electrical energy widely available for future needs," Tour said. "Rick had a way of making things happen, and for six months during 2004, there were no fewer than 50 researchers in four Rice laboratories devoting their effort to this problem. It was unprecedented, and it paid off."

First discovered just 15 years ago, single-walled carbon nanotubes (SWNTs) are molecules of pure carbon with many unique properties. Smaller in diameter than a virus, nanotubes are about 100 times stronger than steel, weigh about one-sixth as much and are among the world's best electrical conductors and semi-conductors. Smalley, who devoted the last 10 years of his career to studying SWNTs, pioneered the first method for mass-producing them and many of the techniques scientists use to study them.

There are dozens of types of SWNTs, each with a characteristic atomic arrangement. These variations, though slight, can lead to drastically different properties: Some nanotubes are like metals, and others are semiconductors. While materials scientists are anxious to use SWNTs in everything from bacteria-sized computer chips to geostationary space elevators, most applications require pure compounds. Since all nanotube production methods, including the industrial-scale system Smalley invented in the 1990s, create a variety of 80-odd types, the challenge of making mass quantities of pure tubes - which Smalley referred to as "SWNT amplification" - is one of the major, unachieved goals of nanoscience.

"Rick envisioned a revolutionary system like PCR (polymerase chain reaction), where very small samples could be exponentially amplified," Tour said. "We're not there yet. Our demonstration involves single nanotubes, and our yields are still very low, but the amplified growth route is demonstrated."

The nanotube seeds are about 200 nanometers long and one nanometer wide - length-to-diameter dimensions roughly equal to a 16-foot garden house. After cutting, the seeds underwent a series of chemical modifications. Bits of iron were attached at each end, and a polymer wrapper was added that allowed the seeds to stick to a smooth piece of silicon oxide. After burning away the polymer and impurities, the seeds were placed inside a pressure-controlled furnace filled with ethylene gas. With the iron acting as a catalyst, the seeds grew spontaneously from both ends, growing to more than 30 times their initial length - imagine that 16-foot water hose growing by more than 500 feet - in just a few minutes.

Tour, Chao Professor of Chemistry, professor of mechanical engineering and materials science and professor of computer science, said CNL's team has yet to prove that the added growth has the same atomic architecture - known as chirality - of the seeds. However, he said the added growth had the same diameter as the original seed, which suggests that the methodology is successful.

Other researchers on the project include Yubao Li, postdoctoral researcher; Valerie C. Moore, former graduate student and assistant professor at the University of Texas Health Science Center at Houston; Katherine Price, graduate student; Ramon Colorado Jr., research scientist; Howard Schmidt, CNL executive director; Robert Hauge, distinguished faculty fellow and CNL technology director; and Andrew Barron, the Charles W. Duncan Jr.-Welch Professor of Chemistry, professor of materials science and associate dean for industry interactions and technology transfer.

Research sponsors include the Defense Advanced Research Projects Administration, NASA and the Robert A. Welch Foundation.

####

About Rice University
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size: 2,850 undergraduates and 1,950 graduate students; selectivity: 10 applicants for each place in the freshman class; resources: an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, please click here

Contacts:
Jade Boyd
(713) 348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Nanotubes/Buckyballs/Fullerenes

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project