Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > From Bubbles to Capsules

Making silicon dioxide nanocapsules by frothing polymers with supercritical carbon dioxide

From Bubbles to Capsules

Posted on September 07, 2006

Nanocapsules are vessels with diameters in the nanometer range and very thin shells. They can store a tiny volume of liquid and can protect their cargo while transporting it through a foreign medium — such as a human blood vessel — without any loss. Further applications for nanocapsules include the encapsulation of scents, printer ink, and adhesives. Once at their destinations, the payloads are released by pressure or friction. Japanese researchers have now developed a clever new technique for the production of silicon dioxide nanocapsules: they start with tiny bubbles of carbon dioxide in a silicon copolymer.

Lei Li and Hideaki Yokoyama coated silicon wafers, which act as a support, with thin films of a special plastic that consists of molecules with segments of different types of polymers, so-called block copolymers, in this case made of polystyrene and silicone. The researchers made their copolymer films such that nanoscopic “droplets” of silicone “float” in a matrix of polystyrene. Supercritical carbon dioxide (CO2) is then forced into this film under high pressure at 60 °C. (In a supercritical fluid, it is impossible to distinguish between the liquid and gas phases.) The CO2 lodges within the droplets of silicone in the block copolymer and forms bubbles. It cannot force its way into the polystyrene matrix, however. In the next step, the scientists cool the film down to 0 °C in order to freeze the polystyrene matrix and then slowly reduce the pressure back to atmospheric levels. The CO2 returns to the gas phase, expands, and escapes from the bubbles without collapsing them. Finally, the researchers expose the polymer film to ozone and UV light. Under these conditions, the polystyrene matrix is completely destroyed; the silicone surrounding the bubbles is oxidized to silicon dioxide (SiO2). This results in a thin film of tightly packed, tiny cavities with a thin shell of silicon dioxide. These nanocapsules have diameters of less than 40 nanometers and walls that are about 2 nanometers wide.

The particular advantage of this method is that the resulting nanocapsules are organized into a two-dimensional structure that can be controlled by varying the segments of the block copolymer.


Author: Hideaki Yokoyama, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan),

Title: Nanoscale Silica Capsules Ordered on a Substrate: Oxidation of Nanocellular Thin Films of Poly(styrene-b-dimethylsiloxane)

Angewandte Chemie International Edition, 2006, 45, No. 38, doi: 10.1002/anie.200602274

Editorial office:

or David Greenberg (US)

or Julia Lampam (UK)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Crystal clear: Thousand-fold fluorescence enhancement in an all-polymer thin film: Griffith University researchers report breakthrough due to novel and multi-layer Colloidal Photonic Crystal structure October 2nd, 2015

Scientists produce status check on quantum teleportation October 1st, 2015

Hopes of improved brain implants October 1st, 2015

Graphene Has a Place on the Hype Cycle, Says European Flagship Director October 1st, 2015


Sniffing out cancer with improved 'electronic nose' sensors October 2nd, 2015

Hopes of improved brain implants October 1st, 2015

New Nanomaterials Taking Research to Mexico, Possibly into Space September 29th, 2015

Cristal Therapeutics Starts Clinical Phase I Trial with Nanomedicine CriPec® Docetaxel in Patients with Solid Tumours September 29th, 2015


Scientists found a natural nanostructure to control the flow of light October 4th, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015

Production of High Temperature Ceramics with Modified Properties in Iran October 2nd, 2015

ISO Approves 2 Int'l Nanotechnology-Related Standards Proposed by Iran October 2nd, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic