Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > From Bubbles to Capsules

Abstract:
Making silicon dioxide nanocapsules by frothing polymers with supercritical carbon dioxide

From Bubbles to Capsules

Posted on September 07, 2006

Nanocapsules are vessels with diameters in the nanometer range and very thin shells. They can store a tiny volume of liquid and can protect their cargo while transporting it through a foreign medium — such as a human blood vessel — without any loss. Further applications for nanocapsules include the encapsulation of scents, printer ink, and adhesives. Once at their destinations, the payloads are released by pressure or friction. Japanese researchers have now developed a clever new technique for the production of silicon dioxide nanocapsules: they start with tiny bubbles of carbon dioxide in a silicon copolymer.

Lei Li and Hideaki Yokoyama coated silicon wafers, which act as a support, with thin films of a special plastic that consists of molecules with segments of different types of polymers, so-called block copolymers, in this case made of polystyrene and silicone. The researchers made their copolymer films such that nanoscopic “droplets” of silicone “float” in a matrix of polystyrene. Supercritical carbon dioxide (CO2) is then forced into this film under high pressure at 60 °C. (In a supercritical fluid, it is impossible to distinguish between the liquid and gas phases.) The CO2 lodges within the droplets of silicone in the block copolymer and forms bubbles. It cannot force its way into the polystyrene matrix, however. In the next step, the scientists cool the film down to 0 °C in order to freeze the polystyrene matrix and then slowly reduce the pressure back to atmospheric levels. The CO2 returns to the gas phase, expands, and escapes from the bubbles without collapsing them. Finally, the researchers expose the polymer film to ozone and UV light. Under these conditions, the polystyrene matrix is completely destroyed; the silicone surrounding the bubbles is oxidized to silicon dioxide (SiO2). This results in a thin film of tightly packed, tiny cavities with a thin shell of silicon dioxide. These nanocapsules have diameters of less than 40 nanometers and walls that are about 2 nanometers wide.

The particular advantage of this method is that the resulting nanocapsules are organized into a two-dimensional structure that can be controlled by varying the segments of the block copolymer.

####


Author: Hideaki Yokoyama, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan), yokoyama@ni.aist.go.jp

Title: Nanoscale Silica Capsules Ordered on a Substrate: Oxidation of Nanocellular Thin Films of Poly(styrene-b-dimethylsiloxane)

Angewandte Chemie International Edition, 2006, 45, No. 38, doi: 10.1002/anie.200602274

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project