Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > From Bubbles to Capsules

Making silicon dioxide nanocapsules by frothing polymers with supercritical carbon dioxide

From Bubbles to Capsules

Posted on September 07, 2006

Nanocapsules are vessels with diameters in the nanometer range and very thin shells. They can store a tiny volume of liquid and can protect their cargo while transporting it through a foreign medium — such as a human blood vessel — without any loss. Further applications for nanocapsules include the encapsulation of scents, printer ink, and adhesives. Once at their destinations, the payloads are released by pressure or friction. Japanese researchers have now developed a clever new technique for the production of silicon dioxide nanocapsules: they start with tiny bubbles of carbon dioxide in a silicon copolymer.

Lei Li and Hideaki Yokoyama coated silicon wafers, which act as a support, with thin films of a special plastic that consists of molecules with segments of different types of polymers, so-called block copolymers, in this case made of polystyrene and silicone. The researchers made their copolymer films such that nanoscopic “droplets” of silicone “float” in a matrix of polystyrene. Supercritical carbon dioxide (CO2) is then forced into this film under high pressure at 60 °C. (In a supercritical fluid, it is impossible to distinguish between the liquid and gas phases.) The CO2 lodges within the droplets of silicone in the block copolymer and forms bubbles. It cannot force its way into the polystyrene matrix, however. In the next step, the scientists cool the film down to 0 °C in order to freeze the polystyrene matrix and then slowly reduce the pressure back to atmospheric levels. The CO2 returns to the gas phase, expands, and escapes from the bubbles without collapsing them. Finally, the researchers expose the polymer film to ozone and UV light. Under these conditions, the polystyrene matrix is completely destroyed; the silicone surrounding the bubbles is oxidized to silicon dioxide (SiO2). This results in a thin film of tightly packed, tiny cavities with a thin shell of silicon dioxide. These nanocapsules have diameters of less than 40 nanometers and walls that are about 2 nanometers wide.

The particular advantage of this method is that the resulting nanocapsules are organized into a two-dimensional structure that can be controlled by varying the segments of the block copolymer.


Author: Hideaki Yokoyama, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan),

Title: Nanoscale Silica Capsules Ordered on a Substrate: Oxidation of Nanocellular Thin Films of Poly(styrene-b-dimethylsiloxane)

Angewandte Chemie International Edition, 2006, 45, No. 38, doi: 10.1002/anie.200602274

Editorial office:

or David Greenberg (US)

or Julia Lampam (UK)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

'Material universe' yields surprising new particle November 28th, 2015

New 'self-healing' gel makes electronics more flexible November 25th, 2015

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier November 22nd, 2015

Quantum Spin Could Create Unstoppable, One-Dimensional Electron Waves: New theory points the way forward to transform atom-thin materials into powerful conductors November 18th, 2015


Nanoparticles simplify DNA identification and quantification November 27th, 2015

Scientists 'see' detailed make-up of deadly toxin for the first time: Exciting advance provides hope for developing novel potential method of treating pneumococcal diseases such as bacterial pneumonia, meningitis and septicaemia November 25th, 2015

Electric fields remove nanoparticles from blood with ease November 24th, 2015

Production of Nanocapsules Containing Omega-3 Powder in Iran November 24th, 2015


'Material universe' yields surprising new particle November 28th, 2015

Iranian Scientists Discover New Catalyst to Remove Pharmaceutical Compounds from Wastewater November 28th, 2015

RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Nanoparticles Boost Impact Resistance of Special Type of Polymer November 28th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic