Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > From Bubbles to Capsules

Abstract:
Making silicon dioxide nanocapsules by frothing polymers with supercritical carbon dioxide

From Bubbles to Capsules

Posted on September 07, 2006

Nanocapsules are vessels with diameters in the nanometer range and very thin shells. They can store a tiny volume of liquid and can protect their cargo while transporting it through a foreign medium — such as a human blood vessel — without any loss. Further applications for nanocapsules include the encapsulation of scents, printer ink, and adhesives. Once at their destinations, the payloads are released by pressure or friction. Japanese researchers have now developed a clever new technique for the production of silicon dioxide nanocapsules: they start with tiny bubbles of carbon dioxide in a silicon copolymer.

Lei Li and Hideaki Yokoyama coated silicon wafers, which act as a support, with thin films of a special plastic that consists of molecules with segments of different types of polymers, so-called block copolymers, in this case made of polystyrene and silicone. The researchers made their copolymer films such that nanoscopic “droplets” of silicone “float” in a matrix of polystyrene. Supercritical carbon dioxide (CO2) is then forced into this film under high pressure at 60 °C. (In a supercritical fluid, it is impossible to distinguish between the liquid and gas phases.) The CO2 lodges within the droplets of silicone in the block copolymer and forms bubbles. It cannot force its way into the polystyrene matrix, however. In the next step, the scientists cool the film down to 0 °C in order to freeze the polystyrene matrix and then slowly reduce the pressure back to atmospheric levels. The CO2 returns to the gas phase, expands, and escapes from the bubbles without collapsing them. Finally, the researchers expose the polymer film to ozone and UV light. Under these conditions, the polystyrene matrix is completely destroyed; the silicone surrounding the bubbles is oxidized to silicon dioxide (SiO2). This results in a thin film of tightly packed, tiny cavities with a thin shell of silicon dioxide. These nanocapsules have diameters of less than 40 nanometers and walls that are about 2 nanometers wide.

The particular advantage of this method is that the resulting nanocapsules are organized into a two-dimensional structure that can be controlled by varying the segments of the block copolymer.

####


Author: Hideaki Yokoyama, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan), yokoyama@ni.aist.go.jp

Title: Nanoscale Silica Capsules Ordered on a Substrate: Oxidation of Nanocellular Thin Films of Poly(styrene-b-dimethylsiloxane)

Angewandte Chemie International Edition, 2006, 45, No. 38, doi: 10.1002/anie.200602274

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project