Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers get their teeth into artificial dental enamel

Abstract:
A natural fix to avoid metal fillings

Researchers get their teeth into artificial dental enamel

Posted on August 01, 2006

An international team of researchers have finally got their teeth into making artificial dental enamel. Their work, published in the journal Advanced Materials, could lead to new tough coatings for engineering applications as well as the possibility of a natural fix for broken or rotten teeth that avoids heavy metal fillings.

Researchers have chewed over how to make novel materials that mimic some of the best physical and chemical properties of natural compounds for many years. Among such natural materials is dental enamel, which is not only smooth, but very hard, making it a potential coating for engineering components in which wear and tear are a normally serious problem.

Dental enamel is the outermost layer of the teeth and is the hardest mineralized tissue in the human body. It is composed mainly of millions of microscopic crystals of the mineral hydroxyapatite. These tiny hexagonal rods pack together to form a structure known as the enamel prism. The tight packing of these units makes all the difference between "al dente" and a slurp by protecting the living tooth within and making it hard enough to bite through most foods.

Cells, known as ameloblasts, build the dental enamel from mineral salts and enamel proteins. However, once the enamel layer is complete, the ameloblast cells die, leaving behind an essentially dead coating on each tooth. If you damage the enamel, there are no quick fix cells to carry out a repair and regenerate it.

Brian Clarkson of the University of Michigan and colleagues in Poland have now taken a bite out of nature's recipe book and used the so-called hydrothermal method to make artificial dental enamel. The hydrothermal approach has been used to make other materials before and is analogous to using a pressure cooker. The ingredients are crystallised from water under high pressure so that it is well above its boiling point. This is the first time hydrothermal chemistry has been used to create artificial dental enamel.

Under the microscope, Clarkson's synthetic dental enamel has a very similar crystal structure to natural enamel. The new synthetic material is also almost as tough as natural enamel and supports the growth of living cells. As such it might one day be used to grow artificial teeth, something that anyone who suffers daily ritual of dunking their false teeth in sterilizing solution at bed time might welcome.

"This work demonstrates the potential of applying nanotechnology to the direct creation of biomaterials with a specific biological architecture, in this case, human enamel," Clarkson says. "We are now working on producing thicker apatite films and blocks of this synthetic enamel to be used as veneer coverings for unsightly teeth and caps (crowns) for teeth which are heavily filled and/or broken down."

####


Brian H. Clarkson, University of Michigan (USA),www.dent.umich.edu/

Title: Acellular Synthesis of a Human Enamel-like Microstructure

Angewandte Chemie International Edition, 2006, 18, No. 14, 1846-1851, doi: 10.1002/adma.200502401

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE