Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Rice Scientists Make First Nanoscale pH Meter

Abstract:
Tiny, High-resolution Sensors Could Probe Living Cells, Tissues

Rice Scientists Make First Nanoscale pH Meter

Houston, TX | Posted on June 29, 2006

Using unique nanoparticles that convert laser light into useful information, Rice University scientists have created the world's first nano-sized pH meter.

The discovery, which appears online this week in the journal Nano Letters, presents biologists with the first potential means of measuring accurate pH changes over a wide pH range in real-time inside living tissue and cells.

"Almost every biologist I speak with comes up with one or two things they'd like to measure with this," said lead researcher Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering, professor of chemistry and director of Rice's Laboratory for Nanophotonics (LANP).

For example, pH may be useful in determining whether or not some cancer tumors are malignant. With current methods, a piece of the tumor would need to be physically removed via biopsy – a painful and invasive procedure – and visually evaluated under a microscope. Halas said LANP's new nano-pH meter could be used instead as an "optical biopsy" to measure the pH inside the tumor with nothing more invasive than an injection.

Halas's LANP team created the pH sensor using nanoshells, optically tuned nanoparticles invented by Halas. Each nanoshell contains a tiny core of non-conducting silica that's covered by a thin shell of metal, usually gold. Many times smaller than living cells, nanoshells can be produced with great precision and the metal shells can be tuned to absorb or scatter specific wavelengths of light.

To form the pH sensor, Halas' team coated the nanoshells with pH-sensitive molecules called paramercaptobenzoic acid, or pMBA. When placed in solutions of varying acidity and illuminated, the nanoshell-molecule device provides small but easily detectable changes in the properties of the scattered light that, when "decoded," can be used to determine the pH of the nanodevice's local environment to remarkably high accuracy. Inspired by techniques normally applied to image recognition, the team formulated an efficient statistical learning procedure to produce the device output, achieving an average accuracy of 0.1 pH units.

The term "pH" was coined by the Danish chemist Søren Sørensen in 1909 as a convenient way of expressing a solution's acidity. pH ranges from one – the most acidic – to 14 – the most alkaline.

####


Co-authors on the paper include postdoctoral researchers Sandra Bishnoi, now an assistant professor at the Illinois Institute of Technology, and Muhammed Gheith; graduate students Christopher Rozell and Carly Levin; Bruce Johnson, distinguished faculty fellow of chemistry and executive director of the Rice Quantum Institute; and Don Johnson, J.S. Abercrombie Professor of Electrical and Computer Engineering and Statistics.

The research was supported by the Department of Defense's Congressionally Directed Medical Research Program, the Air Force Office of Scientific Research, the Keck Foundation, the Robert A. Welch Foundation and by Texas Instruments.

About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size: 2,850 undergraduates and 1,950 graduate students; selectivity: 10 applicants for each place in the freshman class; resources: an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, please click here

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Announcements

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic