Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > VCU researchers develop new method for synthesis of nanomaterials

Abstract:
Researchers share findings at American Chemical Society National Meeting

VCU researchers develop new method for synthesis of nanomaterials

Richmond, VA | Posted on March 30, 2006

Virginia Commonwealth University chemists, using a simple, commercial microwave oven, have developed a new method for the synthesis of nanomaterials that can control the dimensions and properties of rods and wires that are just one billionth of a meter in size.

The method, known as microwave irradiation, or MWI, is considered a fast and easy way to create highly versatile, tailored nanorods and nanowires to be used in medical applications, drug delivery, sensors, communications and optical devices because microwave heating can provide significant enhancement in reaction rates.

M. Samy El-Shall, Ph.D., professor of chemistry and affiliate professor of chemical engineering at VCU, is discussing his ongoing work of the design, synthesis and characterization of nanoparticles at the American Chemical Society National Meeting & Exposition in Atlanta, March 26-30. In addition, his colleague, Asit Baran Panda, a post-doctoral fellow in the VCU Department of Chemistry, will present this study.

“The synthesis of new materials made of particles, rods and wires with dimensions in the nanometer scale is among the most active areas of research in science due to the unique properties of these materials compared to conventional materials made from micron sized particles,” said El-Shall, who is lead author of the study.

“MWI is unique in providing scaled-up processes thus leading to a potentially important industrial advancement in the large-scale synthesis of nanomaterials,” said El-Shall.

Most methods currently used to synthesize nanomaterials are complicated, require specific equipment and produce small amounts of nanomaterials,” he said.

Although MWI process involves the use of a conventional microwave, it requires a defined recipe of chemicals and solvents to create the nanomaterials in the laboratory setting.

The advantage of using a microwave is that the energy goes directly through molecules compared to thermal heat which just applies heat to everything. In addition, El-Shall said that the nanorods and nanowires made by this method self-assemble into uniform aligned arrays of rods with well-controlled spacing between the rods. This is critical to be able to measure their individual conductivity and fluorescence, he said.

“The key issue here is the control of the size, shape and lateral dimensions of nanostructures because these nanoparticles in the form of rods, wires, belts, cubes, etc., are the building blocks used in devices and processes such as light-emitting diodes, solar cells, single electron transistors, lasers and biological labels,” he said.

Furthermore, El-Shall and his research team found that nanorods that are 1nm wide and 5-6nm long could be synthesized in just 30-60 seconds; while longer nanowires, 1.5nm wide and 350nm long, could be synthesized in two minutes. Traditional methods take many more hours to synthesize such materials.

El-Shall and his team are currently examining how to apply this basic principal to a broader scale to synthesize nanowires with multiple functions such as fluorescence, conductivity and magnetism.

These findings were reported in the March issue of the Journal of the American Chemical Society.

This work was supported by a grant from the National Science Foundation.

El-Shall collaborated with Asit Baran Panda and Garry Glaspell, both post-doctoral fellows in El-Shall’s group in the VCU Department of Chemistry.

####

About VCU and the VCU Medical Center:
Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University is ranked nationally by the Carnegie Foundation as a top research institution and enrolls more than 29,000 students in more than 181 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Forty of the university’s programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country.

For more information, please click here.


Media Contact:
Sathya Achia-Abraham
University News Services
(804) 827-0890
sbachia@vcu.edu

Copyright © Virginia Commonwealth University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Researchers develop new semiconducting polymer for forthcoming flexible electronics April 21st, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Industrial

Novel anti-biofilm nano coating developed at Ben-Gurion U.: Offers significant anti-adhesive potential for a variety of medical and industrial applications April 25th, 2016

Model aids efforts to reduce cost of carbon nanostructures for industry, research April 5th, 2016

Molecular-scale ALD discovery could have industrial-sized impact: New atomic layer deposition technique reduces waste March 31st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic