Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Firefly Energy Awarded Patent for Innovative Battery

Abstract:
Firefly Energy has received a U.S. patent for a lead acid battery technology that it believes has the potential to revolutionize the $16 billion worldwide lead acid battery market

Firefly Energy Awarded Patent for Innovative Battery

Posted on January 18, 2006

Firefly Energy has received a U.S. patent for a new lead acid battery technology that it believes has the potential to revolutionize the existing $16 billion worldwide lead acid battery market as well as serve applications like hybrid electric vehicles which historically aren’t suitable for lead acid batteries.

The Peoria, IL-based company, which was formed to create the next generation of lead acid battery technology based on a material sciences innovation discovered by Caterpillar Inc., said the U.S. Patent and Trademark Office has issued patent number 6,979,513, titled, "Battery Including Carbon Foam Current Collectors." The patent was awarded on December 27, 2005.

The invention is a battery comprised of an electrical current collector constructed of carbon or lightweight graphite foam. This foam exhibits a sizeable increase in surface area for chemical reactions to take place and eliminates the need for heavy lead plates found in traditional batteries. The graphite material resists corrosion and sulfation build-up, thus contributing to longer battery life and is lighter in weight than today’s lead acid batteries.

Firefly Chief Scientist Kurtis C. Kelley developed the technology while serving as senior research scientist in the advanced materials division of Caterpillar’s R&D center.

Kelley was assigned the problem of pursuing increased performance for lead-acid batteries used by Caterpillar’s product groups. The challenges that Kelley faced were manifold. First among them were how to address the main performance challenges of a lead acid battery:

  • Short life caused by corrosion (of the battery’s positive plate) and sulfation (of the battery’s negative plate).
  • Removing the bottlenecks to realizing the theoretical power and capacity of the lead acid chemistry itself.

“Since Kurt, an accomplished material scientist, had never designed a battery before, his problem-solving approach was unconstrained by the conventional battery wisdom held by lead acid battery technologists,” says Edward F. Williams, CEO and a co-founder of Firefly Energy.

Performance improvements in lead acid batteries are realized through better utilization of surface area, he adds. The overwhelming restriction to lead acid battery efficiency to this point has been the lack of interface area between the active chemistry and the electrodes. Today, the chemistry is capable of delivering approximately 170 Watt Hours per Kilogram (Whr/kg), yet lead acid batteries only average around 30 Whr/kg. Up to now, achieving a higher surface area within a given lead-acid battery box required the addition of more and thinner lead electrodes. However, lead electrodes corrode, so increasing surface area by putting thinner lead electrodes in the battery increases corrosion and decreases battery life.

“By removing the corrosive heavy lead grids and replacing them with a graphite foam, Kurt Kelley’s invention has helped unleash the innate power of lead acid chemistry,” adds Williams. “It introduces a material that doesn’t corrode and enables the weights and sizes of lead acid batteries to be reduced significantly.”

####


(Ed.'s note: I asked about the "nano inside" and was told "The nanotechnology application at Firefly Energy pertains to the battery’s grid coating process." referring to the nanoscale nature of the coating. For more on this topic, see Firefly battery technology earns powerful backing.)

Media Contact:
Dave Reiners
847-279-0022, x233
dave.reiners@techimage.com

Copyright © Firefly Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Materials/Metamaterials

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Patents/IP/Tech Transfer/Licensing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Smarter window materials can control light and energy July 22nd, 2015

Magnetic nanoparticles could be key to effective immunotherapy: New method moves promising strategy closer to clinical use July 15th, 2015

Energy

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project