Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Firefly Energy Awarded Patent for Innovative Battery

Abstract:
Firefly Energy has received a U.S. patent for a lead acid battery technology that it believes has the potential to revolutionize the $16 billion worldwide lead acid battery market

Firefly Energy Awarded Patent for Innovative Battery

Posted on January 18, 2006

Firefly Energy has received a U.S. patent for a new lead acid battery technology that it believes has the potential to revolutionize the existing $16 billion worldwide lead acid battery market as well as serve applications like hybrid electric vehicles which historically aren’t suitable for lead acid batteries.

The Peoria, IL-based company, which was formed to create the next generation of lead acid battery technology based on a material sciences innovation discovered by Caterpillar Inc., said the U.S. Patent and Trademark Office has issued patent number 6,979,513, titled, "Battery Including Carbon Foam Current Collectors." The patent was awarded on December 27, 2005.

The invention is a battery comprised of an electrical current collector constructed of carbon or lightweight graphite foam. This foam exhibits a sizeable increase in surface area for chemical reactions to take place and eliminates the need for heavy lead plates found in traditional batteries. The graphite material resists corrosion and sulfation build-up, thus contributing to longer battery life and is lighter in weight than today’s lead acid batteries.

Firefly Chief Scientist Kurtis C. Kelley developed the technology while serving as senior research scientist in the advanced materials division of Caterpillar’s R&D center.

Kelley was assigned the problem of pursuing increased performance for lead-acid batteries used by Caterpillar’s product groups. The challenges that Kelley faced were manifold. First among them were how to address the main performance challenges of a lead acid battery:

  • Short life caused by corrosion (of the battery’s positive plate) and sulfation (of the battery’s negative plate).
  • Removing the bottlenecks to realizing the theoretical power and capacity of the lead acid chemistry itself.

“Since Kurt, an accomplished material scientist, had never designed a battery before, his problem-solving approach was unconstrained by the conventional battery wisdom held by lead acid battery technologists,” says Edward F. Williams, CEO and a co-founder of Firefly Energy.

Performance improvements in lead acid batteries are realized through better utilization of surface area, he adds. The overwhelming restriction to lead acid battery efficiency to this point has been the lack of interface area between the active chemistry and the electrodes. Today, the chemistry is capable of delivering approximately 170 Watt Hours per Kilogram (Whr/kg), yet lead acid batteries only average around 30 Whr/kg. Up to now, achieving a higher surface area within a given lead-acid battery box required the addition of more and thinner lead electrodes. However, lead electrodes corrode, so increasing surface area by putting thinner lead electrodes in the battery increases corrosion and decreases battery life.

“By removing the corrosive heavy lead grids and replacing them with a graphite foam, Kurt Kelley’s invention has helped unleash the innate power of lead acid chemistry,” adds Williams. “It introduces a material that doesn’t corrode and enables the weights and sizes of lead acid batteries to be reduced significantly.”

####


(Ed.'s note: I asked about the "nano inside" and was told "The nanotechnology application at Firefly Energy pertains to the battery’s grid coating process." referring to the nanoscale nature of the coating. For more on this topic, see Firefly battery technology earns powerful backing.)

Media Contact:
Dave Reiners
847-279-0022, x233
dave.reiners@techimage.com

Copyright © Firefly Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Materials/Metamaterials

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Announcements

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic