Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Firefly Energy Awarded Patent for Innovative Battery

Abstract:
Firefly Energy has received a U.S. patent for a lead acid battery technology that it believes has the potential to revolutionize the $16 billion worldwide lead acid battery market

Firefly Energy Awarded Patent for Innovative Battery

Posted on January 18, 2006

Firefly Energy has received a U.S. patent for a new lead acid battery technology that it believes has the potential to revolutionize the existing $16 billion worldwide lead acid battery market as well as serve applications like hybrid electric vehicles which historically aren’t suitable for lead acid batteries.

The Peoria, IL-based company, which was formed to create the next generation of lead acid battery technology based on a material sciences innovation discovered by Caterpillar Inc., said the U.S. Patent and Trademark Office has issued patent number 6,979,513, titled, "Battery Including Carbon Foam Current Collectors." The patent was awarded on December 27, 2005.

The invention is a battery comprised of an electrical current collector constructed of carbon or lightweight graphite foam. This foam exhibits a sizeable increase in surface area for chemical reactions to take place and eliminates the need for heavy lead plates found in traditional batteries. The graphite material resists corrosion and sulfation build-up, thus contributing to longer battery life and is lighter in weight than today’s lead acid batteries.

Firefly Chief Scientist Kurtis C. Kelley developed the technology while serving as senior research scientist in the advanced materials division of Caterpillar’s R&D center.

Kelley was assigned the problem of pursuing increased performance for lead-acid batteries used by Caterpillar’s product groups. The challenges that Kelley faced were manifold. First among them were how to address the main performance challenges of a lead acid battery:

  • Short life caused by corrosion (of the battery’s positive plate) and sulfation (of the battery’s negative plate).
  • Removing the bottlenecks to realizing the theoretical power and capacity of the lead acid chemistry itself.

“Since Kurt, an accomplished material scientist, had never designed a battery before, his problem-solving approach was unconstrained by the conventional battery wisdom held by lead acid battery technologists,” says Edward F. Williams, CEO and a co-founder of Firefly Energy.

Performance improvements in lead acid batteries are realized through better utilization of surface area, he adds. The overwhelming restriction to lead acid battery efficiency to this point has been the lack of interface area between the active chemistry and the electrodes. Today, the chemistry is capable of delivering approximately 170 Watt Hours per Kilogram (Whr/kg), yet lead acid batteries only average around 30 Whr/kg. Up to now, achieving a higher surface area within a given lead-acid battery box required the addition of more and thinner lead electrodes. However, lead electrodes corrode, so increasing surface area by putting thinner lead electrodes in the battery increases corrosion and decreases battery life.

“By removing the corrosive heavy lead grids and replacing them with a graphite foam, Kurt Kelley’s invention has helped unleash the innate power of lead acid chemistry,” adds Williams. “It introduces a material that doesn’t corrode and enables the weights and sizes of lead acid batteries to be reduced significantly.”

####


(Ed.'s note: I asked about the "nano inside" and was told "The nanotechnology application at Firefly Energy pertains to the battery’s grid coating process." referring to the nanoscale nature of the coating. For more on this topic, see Firefly battery technology earns powerful backing.)

Media Contact:
Dave Reiners
847-279-0022, x233
dave.reiners@techimage.com

Copyright © Firefly Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project